

TABLE OF CONTENTS

The Explorer - An Qverview R
TIIEI Elplﬂrﬁr Filaﬂ t.liillillillll![lii-lll-lq-jli'li-liilll-l
Loading it into the Environments St rraaesnertsua et asanea

The Function and Control L

Cpu Status & Interrupts PE ALl et e T E s et u T s A e
Workspace Registers T
Vdp Registers T
Memory Pointer & Windows I
Memory Editor R R T T T T I T R
Search Funotion B A
Grom Library & Instruction Counterﬁ....
Instruction Disassembly R R LR R N T L T T
Explorer's Options Screen ..*............}......+....f....
Number Converaion R T
Unlmua..”.".".".”.“.".”.HEUAH.”.”.p..
High/Step speed Optiona S S

culnr! ‘II.'-ill..l'."ll.lli"ll#.III"'II'I‘III'--III-.I

Decimal Instruction Counter‘............;......

Explorer's Registers Screen .
Gpl Status TP el It e A SRS AT AT s e e ta ey e
Vdp Stalus S MRt E e A s e e e ...
¥dp Write Only registers L L L L T T T T

10

13
14

15
16
17
18
20
21
24
25
26
29
31
33

35
36
40

4y
4y

45
h6é
47
48

L
|

#’;

ThaI Intarrupt Huutinﬂ ‘i.li-.lll--i-lI-.‘.l-.."'I.""'--'-.- 52

-

Explnrﬁtinm i*‘I_I'-I-I‘I‘III-Ill'l-'l'-II'I.lilll‘.“l.ll-"lll-fl- 5#

Key acan routine and the Explorer tessseisnesvavensnns DS
Executing the Power Up ROutinecovcevvvvnnnsnneces BT
Executing & Basle CALLocvevicerecarnseosescenenes B2
Exequting an Extended Basio CALL ...vverevoccnnoneeens 65
Executing Other Assembly Language Programs 67
Direct Execution of Modules A £ 1

Appendixes

Overall HA Memory MaDP ..cucveeecnncrornencocencncnnss. T4
Cpu Rom >Q000->1FFF sevsrssssvrrresessasasnsesrsvassesa TH
Cpu Scratch Pad Ram >8300=D83FF .uviveereeccnonenneen. 80
XB Low/Righ Memory EXPansion .uveeeecevesssccessoesse. 83
Basic and Editor/Assembler VAp MemOI'Yocevocees... 85
Extended Basic VAP MemMOrY .u..uvvivecennnaonconcnneess BE
Grom = 0 >0000~>17FF (System Monitor) ..,....eee.. 89
Grom - 1 & 2 >2000->STFF (Basic Interpreter) 92
Consocle Cru Bits Stesscarvsrassanrenunnonsvoasrennnsss 10O
9900 Microproceasor Instructions secsnssssancasacnnoes 107
Break Point Work Sheet R [X
Grom Address X% Vdp Register Work Sheets U 11

e
{ .

The EXPLORER ~ An Overview

The Explorer program was designed to be used as & tocl to help you understand
how your computer thinks and operates and to be as transparent as possible to
the environment or program that loaded it. The Explorer converts your 44 into
a4 programmer's instrument similar to a engineers Logic State Analyzer. But,
instead of high/low trace lines on a screen it will display a number of fitems
pertinent to the execution of programs by the 9900 Microprocessor.

This new Explorer Instrument will allow you to execute Extended Basic, Basaio,
Assembly Language and a variety of Command Modules all under your control.
Tou can stop and start execution at any time with just the press of a key.
You can watch the actual program screen in slower motion or you can watch the
Explorer's Main Screen as it i1s dynamically updated after each and every
inatruction. You can stop the program and examine and modify memory and other
itemsa, which allows you to conduct "WHAT IF"™ experiments.

The heart of the Explorer is a Machine Language Interpreter that thinks, acts
and has the same logic as a software based 9900 microprocessor. Through this
interpreter the Explorer will open the window into your 99/4A and allow you

to see the actual inner workings of your computer in action.

The Explorer goes through great lengths to analyze and preserve the
environment that it is loaded into so that you can eaaily continue execution
of that prograam or module. It is fully compatible with the Extended Basic,
Editor Assembler, Mini Memory and other Asseambly Language Loaders to allow a
wide variety of Explorations. g

The following few pages contain the instructions and examples for loading the
Explorer into these environments, We hope that you find this new Explorer
instruwent to be as much of an education in the the 99/8A's operation systenm,
GPL Interpreter, and other languasges and modules as we have. “

r'

. |

MEEI00Z00
EXP
MEXP
XBEXP
MXBEXP
BASAMPLE
IB3AMPLE
XBLOAD
IENEMFULL
XEMEMOFF

THE EXPLORER FILES

This is the serial number of your disk for the warranty

registration. It will appear as the first item on a Catalog
liat.

This 1s the Editor/Assembler, Mini Memory, Basic through the
E/A or Mini Mem, or other Load and Run Lype loaders version of
the Explorer,

This is the Myarc Disk Controllep CARD' veraion of the above
file.

Thia is the Extended Basic loader version of the Explorer.

This i3 the Myarc Disk Controller CARD® version of the above
file.

This is a sample Baaio program that loads the Explorer and
allows you to continue execution of the Basio progranm,

This is a pample Extended Basio prograa that loads the
Explorer and allows you to continue execution of the Extended
Basic prograa.

This file can be renamed as LOAD so that whenever the Explorer
disk is in drive 1 and Extended Basic is seslected the Explorer
will automatically load and pass control to you,

This is an Extended Basic MERGE type file that containa line
number 1. This file allows you to bypass the Extended Basic
loader's Memory Pull error condition when you or your Extended
Basic program has previcusly loaded another Assembly language
program that has filled up LOW Memory expansion.

This file i3 an example of how you oan turn off memory
expansion to load and exeoute your Extended Basio program from
YDP RAM instead of High Memory Expansion., This is useful when
your Extended Basic program ia larger than the approx 6K bytes
left after the Explorer is loaded.

If you have a Myarc Disk Controller CARD replace the refsrence to

"DSK1.EXP®

in the BASAMPLE file with "D3K1.MEXP®, Also replace the

references to "DSK1.XBEXP" in the IBSAMPLE, XBLOAD and XBMEMFULL files
with "DSK1 . MXBEXP®,

& The Explorer is compatible with the Hyarc Disk Controller CARD only. It
will not work with the Myare MPES (Mini Peripheral Expansion Syatea) due
to low level hardware differences between the Card and this systeam.

LOADING THE EXPLORER INTO THE

EXTENDED BASIC ENVIRONMMENRT

The Explorer can be loaded into the Extended Basie environment either from
the Command/Edit mode or from a running Extended Baaic Program., If it is
loaded from the Command/Edit mode of Extended Basic then, when you start up
the Explorer, it will return to the Command/Edit mode environment. If it is
loaded from a running program then, when you start up the Explorer, it will
continue execution of the program exactly where it left off.

BOTE
CALL INIT must be executed either by you or the running Extended Basic
program sometime prior to executing the CALL LOAD("DSKt.XBEXP"), Also, if you
have a Myarc Disk Controller Card replace all references to ™DSK3.XBEXP" with
"DSK1.MXBEXP",

FROM COMMAND/EDIT MODE

Type in CALL LOAD(®DSK1.XBEXP") and press enter. The Explorer will load and
paas control of your computer to you. When you start up the Explorer it will
return to the Command/Edit mode of Extended Basic but now it will be in your
control, Once the Application Program screen has scrolled up 1 line and the
cursor has reappeared you can alowly type in anything that is valid for the
Extended Basic Command/Edit mode and watch it work. {

FROM A RUNNING PROGRAM

Place CALL LOAD("DSK1.XBEXP") into your Extended Basic program, where you
want the Explorer to load and pass control to you, and then RUN ybur Extended
Basic program. When your Extended Basic program reaches the line that
containg this CALL LOAD the Explorer will load and pass control of your
computer to you. When you start up the Explorer it will continue executing
your Extended Basio program where it left off but it will be in your control
80 you can watch it work.

Type in OLD DSK1.XBSAMPLE and LIST and RUN it to see an exapple of this type
of loading and program execution. After this program has finished executing,
the Extended Basic interpreter will go through its READY routine. This will
ioad aome default values into the Vdp registers, restore the color table and
character set and the scroll the screen up one line to place the ® READY *
message on the Application Program soreen., Then it will soroll the screen up,
2 more lines and pbring out the cursor. At this point Extended Basic is back
in Command/Edit Mode and is waiting for you to type something in, ;

m

r

LOADING THE EXPLORER INTO THE
EXTENDED BASIC ENVIROMMENT Continued

EXTENDED BASYC PROGRAM SIZE

The Explorer occupies approximately 18X bytes of High Memory Expansion when
it is loaded. This leaves all of Low Memory Expansion free for your Assembly
Language subprograms and part of High Memory Expansion free for your RUNNING
Extended Basio program. If you are not sure if your Extended Basic progran
will fit in memory with the Explorer then load and check your program as
follows;

1. OLD DSKx.yourprogram

2. Type in RUN - press Enter and then Press and hold down FCTN 4 CLEAR,

3. When the program breaks - type in SIZE and press Enter.

4. The STACK size doesn't matter since this is in Vdp Ram.

5. The PROGRAM space must be at LEAST 18,400 Bytes Free for the Explorar
to execute your Extended Basic program properly,

The reason you Must RUN and break your program before checking its size is to
allow Extended Basic to perform the Pre-Scan routine. During Pre-Scan
Extended Basic reserves room for your variables, The string variablea atay in
Vdp Ram so0 they don't matter. However, the Numeric variable’s values are
stored in High Memory Expansion so you must have enough space for these or
your Extended Basic program will not exeoute properly. NOTE: We don't really
recommend that you run large Extended Basic programs through the Explorer
because of the amount of time that it takes. The Explorer was ssant to be
used with direct CALL's and small programs,

If your Extended Basic program is too large to work in Memory Expansion with
the Explorer you can use the XBMEMOFF file to turn off Memory Expansion and
load your program into ¥dp Ram. By doing this you c¢an execute an Extended
Basic program that has a RUNNING siza of up to 12,876 bytes with CALL
FILES(1). This also has an added advantage in that you can easily follow the
Extended Basic interpreter's accesses to your program by having the
Explorer's Memory Window set on Vdp Ram and in Dynamic mode. (ses Memory
Windows for more information). To use this file siaply place your Program
hame and drive location in line 2 of this file instead of the DSK1.XRSAMPLE
that is currently there. Also, your program MUST contain the CALL
LOAD(*DSK1.XBEXP") statement soc that IT loads the Explorer.

o

i

LOADING THE EXPLORER INTO THE
EXTENDED BASIC ENVIROMMENT Contimued

A MEMORY FULL ERROR CONDITION

If, when you try to load the Explorer, you receive a MEMORY FULL error
message on the screen you may be able to use the XBMEMFULL file to bypasa
this condition. Thias file is a MERGE type file that contains a single line
(1ine number 1). This file wil)l only work properly IF the Assembly Language
program that was previously loaded, and is causing this error condition,
resides ENTIRELY in LOW MEMORY EXPANSION. If any part of it resides in High
Memory Expansion the Explorer may overwrite it when 1t is loaded.

This error condition arises when the difference between the First Free
address and Last Free address in Low Memory Expansion is too small, 3¢, this

LOADING THRE EXPLORER INTO THE

file saves the current First Free and Last Free addresses in Low Memory
Expansion and then loada the the default values for these pointers, loads the
Explorer into High Memory and then restores the save values for these
pointers when the Explorer is started up.

Once again, this will NOT work if the Assembly Language program that was
previously loaded is NOT entirely in Low Memory Expansion or if any portion
of it resides in the Explorer's program space.

Here i3 a break down of this one line file: v

JI‘

CALL PEEK(8194,_0,_1,_2,_3):: Save the current Firat Free mdma'? in _0 & _1

Save the current Last Free Address in 2 & 3

CALL LOAD(819%,36,250,64,0, Put default value of >24FA into FFA
Put default value of >4000 into LFA

®*DSK1.XBEXP*, Load the Explorer

8194, 0,_1,_2,_3) Restores the saved values into FFA & LFA
When you start up the Explorer.

ROTE: The Extended Basic Versions (XBEXP & MXBEXP)) will only work in
Extended Basic. You cannot use this version with the Editor/Assembler or Mini

Hemory modules, \

i

With either the Editor Assembler or the Mini Memory module or with the Myarc
Disk Controllera CALL for loading Assembly Language programs the Explorer can
be loaded intoc the Basic environment either from Command/Edit aode or from &
running Basic Prograa.
NOTE 1

CALL INIT does NOT have to be executed prior to loading the Explorer with
these modules unless you receive a MEMORY FULL error condition. The CALL LOAD
statement in these modules automatically executes the CALL INIT if it hasa't
been previously executed. Also any referencea to DSE1.EYP should be replaced
with DSK1.MEXP to load the Explorer with the Myaro Diak Controller Card,

FROM COMMAND/EDIT MODE

»
Type in CALL LOAD(*DSK1.EXP")} and press enter. The Explorer will load and
pass control of your computer to you. When you start up the Explorer 1t will
return to the Command/Edit mode of Basic but now it will be 1in your control.
Once the Application Program screen has scrolled up 1 line and the cursor has

reappeared you can slowly type in anything that is valid for the Basic
Command/Edit mode and watch it work. '

FROM A RUNNING PROGRAM

Place CALL LOAD("DSK1.EXP"} into your Baaic program, where you want the
Explorer to load and pasas control to you, and then RUN your program. When
your Basle program reaches the line that contains this CALL LOAD the Explorer
will load and pass control of your computer to you. When you start up the
Explorer it will continue executing your Basic program where it left off but
it will be in your control sc you can watch it work.

Type in OLD DSK1.BASAMPLE and LIST and RUN it to see an example of thia type
of loading and program execution. After this program has finished executing,
the Basic interpreter will go through its DONE routine. This will scroll the
Acreen up one line and place #% DONE ™ on the screen, then it will scroll
the acreen up one more line and then load some default values intc the Vdp
reglsters, restore the ocolor table and character set and finally scroll the
dcreen up one more line and bring out the ocursor. At this point Basjic is back
in Command/Edit Mode and is waiting for you to type asomething in.

LI
LOADING THE EXPLORER INTO THE

. BASIC ENVIRONMENT Continued

e

LOADING THE EXPLORER INTO THE

EDITOR ASSEMHLER or MINI MEMORY ENVIROEMENTS

BASIC PROGRAM SIZE

Uniike Extended Basic, the size of your Basic program is not critical because
Basie programs are ALWAYS loaded and executed from Vdp Kam. They are never
run out of Expansion Memory so ALL of Expansion Memory is free for Assembly

Language programs.

MEMORY FULL ERROR CONDITION

This condition may occur if you have previouzly loaded an Assembly Language
prograa into memory. If this condition occurs you can easily clear it by
executing CALL INIT. Unfortunately this will also clear out all references to
the previousaly loaded Assembly Language program 30 you can not execute it
through the Explorer. »

The Editor/Assembler - Mini Mem version of the Explorer (DSK1.EXP &
DSK1.MEXP) loads into High Memory Expansion and occuples approximately 18K
bytes of this memory area. It does not use Low Memory Bxpansion or the Mini
Men Ram 50 these areas and approx 6K bytes of High Memory are left free for
your Aasembly Language Subprograms,

The Explorer can be loaded alone or along with a Non-Auto-Start Assembly
Language program or subprogram. The Explorer MUST be the LAST file loaded
because it will take control. Loading your own Assembly programss along with

the Explorer will allow you to use the Explorer as a very powerful debugging
aid.

Once agajin, the Explorer loads itself into High Memory Expansion and oocupien
18K bytes of this area. This leaves 6K bytes free for your assembly progranm
in High Memory plus room for the XOP 1 instruction. This also leaves all &K
of the Mini Memory Ram for your use and ALL 8K of Low Memory Expansion. The
Explorer does NOT use any of the Editor Assembler Utilities so your progras
can write over these or modify them to suit your needs. With a little fancy
AORGing in your own Assembly Language progras you can easily load up to 18K
bytes and still have enough room for the Explorer.

EDITOR ASSEMBLER ENVIRONMERY

Sglant 3 LOAD AND RUN
When this prompt appears ® LOAD AND RDN #
FILE NAME
Type in D5K1 . EXP and preass Enter

The Explorer will load and pass control of your computer to you.

MINI MEMORY ENVIRONMENT

Select 1 LOAD AND RON |
When this prompt appears & LOAD AND RUN *

FILE NAME |
Type in DSK1.EXP and press Enter

The Explorer will load and pass control of your computer to you.

i
i »

LOADING THE EXPLORER INTO
OTEER LOAD AND RUR TYPE LOADER ENVIROMMENTS

The Explorer can also be loaded with either the Myarc Disk Controller Card's
CALL LR{"DSX1.MEXP")} for Load and Run Type files or from our Disk Manager for
the Corcomp Disk Controller. When the Myarc Disk Controller's CALL LR is
executed from Basic it does not require the Editor/Assesbler or Mini Menm
modules to be plugged in. This leaves your module port free for Explorations
of Command Modules (see Explorations for more info). Also, when you select
Load and Run Assembly file from within our Disk Manager program you can have
any module you would like to Explore plugged into the cartridge port. With
this ability it opens up a wide variety of Explorations such a3, Paraec,
Adventure, Perasonal HRecord Keeping, Munch Man, Number Magic and on and on and
on, There goes the sleep!

The Myarc CALL LR is executed from Basic s0 when you start up the Explorer it
willl return to Basie. If you are trying to acceas a command module then set
the Explorer to execute the Power Up routine (WS = B3E0 PC = 0024). This will
allow you to access the module through the normal senu acreen when you get
there. Qur Disk Manager loader is executed from within the Disk Manager
program and as asuch the Disk Manager is written over when it lcoads another
assembly language program. This means that there isn't any place to return
to. 50, before you start up the Explorer, after loading it with this loader,
change the Cpu WS and PC to the values for the Power Up routine (aee
Explorations for more info), this gives the Explorer someplace .,to go to and
allows you to select a module from the menu, .

MYARC LOADER FR(OM RBA3SIC

Type in CALL LR(™DSK1.MEXP") and press Enter.

DISKE MANAGER 1L.OADER
Select 1 File Otilities

then select 2 Load and Run Assembly file

Input Prive No, : 1
Disk Name : EXPLORER
Freoe 100 Uaed 75
4
Input File Name : EXP
Input Program Name : X = Note: any character will do.

aince the Explorer
Auto-Starts

FCTN KEY

T MEMORY WINDOW

2 MEMORY SIZE

3 DISASSEMBLY

SIZE

N PAGE UP

5 SEARCH

6 PAGE DOUN

7 OPTIORS

8 REGISTERS

9 EDIT
FIELDS/MEM

0 BRASIC BIAS

ON/OFF
= ASCII/HEX

Toggles the display betwesn the 3 available Memory
Windows on the Explerer's Main Screen.

Toggles the display size of the Memory Window on the
Explorer's Main Screen through its 4 different aises.

Toggleas the Next Instruotion Diaplay at the bottom of
the Explorer's Main Screen between a display of 1 line
and 3 lines.

lncreases the start address of the current Memory
Window displayed by one full page (amount of increase
automatically variea with the size of the Memory
Window)

Activates the search function and allows you to asarch
through a specified addresa range in the currently
displayed memory type, CPU, GROM or VDP {cgv). You ocan
search in Hex, ASCII or ASCII with Basioc Bias.

Decreases the astart address of the current Memory
Window by one full page (amount of decrease
automatically varies with the size of the NOROTr'Y
window)

Activates the Number Converter and Options Screen of

the Explorer.

Activates the Gpl/Vdp Status and Vdp Write Ouly

Registers Screen of the Explorer.

Toggles the cursor between editing of the Explorer's
control flelds and the Memory Window. (The control
fields are above the double 1lins =), On the Number

Converter screen FCTN 9 will toggle you between the

current field that the cursor i3 on and the
Mathematical and Relational operations selection (ie:
Add, Subtract etc.)

Toggles the Basic Bias display of the Memory Window on
and off which offsets the ASCII diaplay by >60 (96) so
you can see the characters as they appear in the
Extended Basilc and Basic environments. {(This does NCT
affect the Hex values displayed.)

Toggles the Memory Window display between ASCII
characters and their Hexadecimal values. If the Basic
Bias is on, the ASCII display will be offset by >60.

FUNCTION and CONTROL KEYS Continued

CONTROL KEYS

CTRL 1

CTRL 3

CTRL %

CTRL 5

CTRL 9 SAVE OPTIONS

CTRL =

EXBCUTION

PRGM/STATUS
. SCREER

INTERRUPIS
ON/OFF

EXIT

- Inatructs the Explorer to axetute a single
instruction, as pointed to by the PC [fileld, and to
update the entire Main Screen and Application
Program's Screen each time it is pressed and releaaed,
according to the inatruction executed.

= Instructs the Explorer to contlnuously execute
instructions according to the program flow and to
update the Main screen after every instruction (if it
iz displayed) and the Application Program's Screen
unti] CTRL 2 1s pressed again to stop it or until a
programmable Break Point is encountered.

- Togglea the ourrent screen display between the
Explorer's Main Screen and the Application Progranm's
acreen., (note the Explorer executes the program much
fester when the actual program screen 15 diaplayed)

-~ Togglea the Interrupt Enable/Disable flag (E D next to
the IM field). If the flag is set to E, enable, the
Explorer will execute the Interrupt routine(s) each
time the Interrupt Mask (IM) does not equal zero (ie:
LIMI 1 or LIMI 2 instpuction or when you change it
yourself) Y

1

- Pressing and releasing this key will immediately turn
off the sound generator and zero out the sound
indicator at >B3CE in CPU Scratch Pad Rama:

- Pressing this key while the Explorer's Options Screen
1s displayed will write your color and H S options out
to the Explorer Disk in drive one. These saved Optiona
will automatically be loaded each time the Explorer is
loaded.

- Pressing this key when the Explorer 183 NOT in
continuous execution mode will EXIT the Explorer to
the computer's Title Screen (normal operation ia

resumed and control is released back to your computer)

3

T ——

FURCTION and CONTROL KEYS coatinued

]
-

. e —— il il . T il l—

SPECIAL KEY

SHIrT

TURBO - When the Explorer is executing a progras in Continuous
Execution wmode (CTRL 2) with the Explorer's Main
Screen displayed you ocan press the SHIFT key to shift
, 1t into TURBO for faster exeoution of the program.
Pressing this key stops the dynamic updating of the
entire Main Screen display and only updatea the top
portion of the screen, Preaaing SHIFT and the Enter
key, the Space Bar or the CTRL key at the same time
will allow the inatruction counter to be dynamiocally
updated in TURBO Mode.

A FEN NOTES ABOUT THE EKRYS

1. The Explorer executes ita CTRL key strokes when you let UP on the key

3.

5.

not when it is pressed down. Thi= allows you to preas and hold CIRL 2
and then hold down a key that the Application program is looking for

and then let up on the CTRL and 2 keys and the Application Progran
will then accept the other key you are holding down.

fou can press CTRL 1 and then release the CTRL key but hold down the 1
key and the Explorer will be in auto repeat mode for Single Execution
Or very slow continuous execution mode. However, if the Application
Program goes through the key acan the 1 key WILL BE detected.

Tou can also press CTRL 1 and the Skift keys and then release the CTRL

1 keys and the Explorer will go into Turbo mode until you release the
Shift Kaey,

While the Explorer is executing a program (CTRL 2) all of the keys on
the keyboard, except CTRL 2 - Sy function normally as far as the

Application Program being executed is concerned. (Also see "Key Scan
and the Explorer®)

FCTN QUIT (FCTN =) will only be recognized by the Application Program
being executed when the INTERRUPTS are enabled (CTRL 4) sinoe this is
part of the level t interrupt routine.

STARTING IT UP

TITLE SCREEN
Cnce the Explorer is loaded you will be greeted by the EXPLORER's Title

screen. This acreen will only appear when the program is first loaded. At
Lthis point you can press ANY key to bring up the Explorer's Main Soreen. Once
the Main Screen has appeared YOU are in control and ready for sonme
Explorations,

At this time it might be a good idea to play around witb the various FCTN
keys. You might also want to play around with the Arrow Eeys and Enter key to
get familiar with cursor's paths through the fieldas. But, DO NOT change ANY
values if you want to continue proper execution of the Application Prograa.
The Explorer has preset these values for you, according to the environment

that 1t was loaded into.

CTHL

To aai where you left off on the Application Program's screen just press and
release CTRL 3. With the Application Program's soreen displayed you can press
and release CTRL 3 again to bring the Explorer's Main Screen back up. (Note:
the Application Program executes Much faster with the dpplication Program

Screen displayed)

CTRL 1 or CTRL 2 2
With either the Explorer's Majin Soreesn or the Application Program's Screen

displayed you can press and release CTRL 1 to exeocute a single {nstruction,.

Pressing and releasing CTRL 2 will turn the Explorer ON and let it

continuoualy execute Instructions until CTRL 2 is pressed and ruifnuud agaln,
At this point and time Jjust Explore and have fun. YOU CAN NOT HURT YOUR
COMPUTER! The worst thing that can happen, if you change some of the values,
is that you may lock you your computer and will have to shut it off and
reload the Explorer (please see next page for a few Warnings). A little
latter on in this manual is a section on Explorations. In this section we
will take you step-by-step through various items and document them as we go.

One last point before we leave this page. You may have noticed, if you loaded
the Explorer through a running Basio or Extended Basic program that the
screen color was set back to Cyan. Unfortunately, there is no way of checking
the soreen color when the Explorer is loaded so the Explorer sets up default
values for the B Vdp Write Only registers. If you load the Bxplorer through a
running Basic or Extended Basic program you can easily correct this b
placing a CALL SCREEN(x) right after the CALL LOAD("DSK1.¥xxxx")}. Then when
you start up the Explorer it will continue execution of your program and set
the screen back to.the color you want. Or, you can easily edit the V] field
of the Vdp Register display area and change the screen colopr.

%

WARNIRG | WARRING WARNING

|

VARRING NARNING

Even though the Explorer was made to be as Transparent as possible to the
operation of your computer and itsa peripherals there are a few items you
sahould be aware of.

1. Any TIMING oritical operations will NOT function properly. Because the
Explorer is operating your computer in Interpretive mode itas spead of
operation ias greatly reduced. This means that ALL Baud rate operations
suoh as RS232 and CS?! or €S2 will not work properly.

2, Since the transfer of data to and fron the floppy disk controller is vary
timing oritical these functions will not work properly. The Explorer will
allow you to Explore right up to the point where the controller is looking
for a devios ready from the disk drive but it will not be received so an
error is returned. The error is usually 06 ~ device not ready or no
diskette/drive. This will not harm your drives or the floppy contained
therein but you will NOT be able to successfully execute OLD, SAVE or CALL
LOAD("DSKx .xxxx") type commands.

3. If you own one of the RAM DISK type aemory cards, we have found that you
CANNOT make ANY Disk type accesses since these DSRs usually tske ocontrol
before the floppy disk controller DSR. When these devices take control
they usually do a 32K bank switch and this Pages the Explorer out of
memory and out of control. Unfortunately they do not return baock to us
properly aince we are executing in Interpretive mode so everything gets
locked up. The only thing you oan do if this happens is shut down and
reload.

4. The Myarc Ram Disk Card (128K Card) also does a Bank switch on Power Up
and on EVERY Interrupt. If you own ohe of these carda you will not be able

to succeasfully go through the Power Up Routine or use the interrupta when
the Explorer is in control. | |

INPORTANT IMPORTANT 1MPORTANT IMPORTANT

5. If you have a Hard Disk Drive hooked up to your computer you can load
files through the Explorer since this device is always apipning and in a
ready state. HOWEVER, THERE IS i 99.99% CHANCE THAT IT WILL WIPE OUT THE
FILE'S HEADER ON THE HARD DISK. We have also had it wipe out a few other
files with similar names and quite a number of times it made such a mess
of things that the only way to get the hard disk back in operation was to
REFORMAT IT11! Bye Bye lileal!!

DO ROT LOAD FILES OFF YHE HARD DISK THROUGH THE EXPLORER UNLE3S YOU DON'T
CARE IF IT YIPES 00T T0UR HARD DISK(1?, - Doa’t say w dida't warn youl

e —— -

i

BEXPLORER'S MAIN SCREEN

CPU GROM vDp Binary display
Control Control Control of Cpu Status
Area Area Area Register

fEiu Grom Vdp Status

w3 B3E0 ad 0123 ad 0123 1 a e c
pec 0024 Dby 00 by 00 0000

st 0000 st 00 st 00 o p x im
bp FFFF bp FFFF bp FFFF 0 0 0 0Od Interrupt mask

value,

Work Space rQ 0CO0 rid 000C r8 0000 r12 0000 ¢ = enabled
Register r1 000G r5 0000 r9 0000 ri13 0000 d = disabled
values rZ 0000 ré 0000 ri10 0000 ri14 0000 (CTRL 4)

r3 0000 rT O000 ri1t% 0000 15 0000

v0 00 vZ 00 v 00 vé 00 Vdp Regiater

vl G0 v3 00 v6 00 v? 00 values
MEMORY POINTER ———t-c00008 Grom Lib 9800 000000C0 Instruction
¢ = Rom or Ram RN EER IR CEEEEESSEEREEESERE counter in hex.
g = Grom or Graa 00 00 GO0 00 00 00 00 00 0D 00 00 ooxﬁhh
v = Ydp Ram [00 00 00 00 00 00 00 00 00 00 0O 00/ Praas FCTN t to
0000 = address 00 0C 00 00 00 00 00 00 00 00 00 00 diaplay the other
s = Static 00 0C 00 00 00 0D 00 00 00 00 00 0OC Hfjury Windows.
d = Dynamic 00 00 00 00 00 00 00 OO0 0O 00 Q0 00 .

Tracking 00 00 00 00 00 00 00 DO 00 00 00 O FCTN. 9 to edit

R IR S EEE RN IIE N ICE RS S EEERR Memol'y or Fields

Next instruotion R13, >9800

-~

020D LI
to be executed. .
4

The UP, DOWN, LEFT and RIGHT arrow keys and the ENTER key will move you
from field to field. FCTN 9 will toggle your cursor between editing
memory and editing fields. While you are editing the fields or the
Memory block in hex you can leave your alpha lock key up or down and the
Explorer will automatically adjust your alpha keystrokes into their
proper upper or lower case entry. When you are editing the Memory block
in ASCII or ASCII with Basic Bias the Explorer will allow you to enter
alpha characters in either upper or lower case.

r.ﬂ

The cursor will not leave a field that is being edited until you press
one of the arrow keys or the Enter key. The exception to this is when
You press and hold the zeroc key, this allows you to easily zero out aome
or all of the fields,

If you press an invalid key or try to input an invalid value, the screen

will change to the Error Colors while you are holding down the invalid
key. These colors can be set by you on the Explorer's Options Soreen.

m_

cpll . sl — - ek Ay oF - vy——
WS 83B0 "= —eao — mw—n - - - -
pe 0028 wa ar o L .o o
st 0000 = -— .
bp FFFF == ccme e cea - - - -
Cpu Controls
uz - Workspace Pointer

at -

This 2 byte field tracks and sets the Cpu's Workspace Pointer Register.
It containa the address of the firat register in the currently selected
Workspace (main software register area for the Cpu). ¥When you or the
Application Program change this pointer, the entire Cpu Register display
area (RO thru R15) will also change. For most Grom based software
(Basiao, X-Basic, Editor/Assembler, Mini Memory and maost other
cartridges) this Field contains >83E0. For the interrupt routines this
field contains >83C0 and for user written Asseably language programs
this fleld can contain any valid even Cpu Ram address. is you change WS
the Explorer writes the values in RO - R15 out to memory. There Eay be
timea when you are changing the WS back to 83E0 that the Sound Chip
comes on, This happens when the last digit in the WS field is not zero
becauss the Sound Chip resides at >8400, If this bappens just press CTRL
5 to turn it Ofr.

Program Counter

This 2 byte field tracks and ssts the Cpu's Program Counter {inastruotion
poioter) Register and it points to the NEXT inatruction to be executed.
Since the Cpu operates only on even addresses (words not bytea) the
least significant bit 1s always 0. You can place an odd address in thia
field but it will be rounded down to an even addreas internally. As this

value changes, the disassembly of the next instruction at the bottom of
the soreen will also change.

3tatus

This 2 byte field tracks and sets the Cpu's Status Register and returns
information on the LAST inatruction éxecutead that affected the Status
Regiater (see the binary Status display on page 21). The display blook
in the upper right hand corner of the Main Screen acreen (Status) is the
binary break down of this register. As this value changes, this binary
display area will also change and visa versa,

bp - Break Point

Since the Explorer's powerful machine language interpreter handles all
tracking of Cpu memory, Rom and Ram, you can set a Break Point for any
valid Cpu PC (program counter) addreas. Unlike other utility programs
this allows you to set Break Points in Rom (Read Only Memory) as well as
Ram. When the Cpu'a PC register equals the value in the Break Point
field the Explorer will halt execution of the Application Program and
display the Explorer'as Main Screen in the break point colors. Presaing
any key will restore the screen to its normal colors and release control
to you. (alac see Break Points on page 20 for additional information)

- Grom e
= ==== 8¢ 0123 —— e,m———. . - - -
------ by 00 == = - a - -
------ st 00 = - - - - -
------ bp FFFF == wcec « = o ma

Grom Controls

ad ~ Grom Address
This 2 byte field tracks and sets the current Grom addreas. Since Grom

is auto incrementing memory this address will automatically increase by
one each time Grom/Gram memory is accessed. The Grom in the 99/84 and
modules contain Data and the Graphics Programming Language (GPL) object
code which is interpreted and executed by the GPL interpreter in console
Rom. Grom is a memory mapped device which means that there are a couple
of ports (Cpu memory addresses) that are used to transfer 1! byte at a
time to and from Grom/Gram. When an Appilication Program or the GPL
interpreter changes this Grom address it must first write the most
s3ignificant byte of the Grom addreas followed by the least significant
byte. In the GPL interpreter these address setting instructions BAY
appear something like this:

MOVE R6,@>0402(R13) (move MSB of R6 to >9C02 (>0802+>9800))

MOVR @>83ED,@>0402(Rt3) (move LSB of R6 to >9C02 (>0802+>9800))

These instructions can be seen when the Cpu PC is at >0060. The Explorer
tracks and executes these Grom address writes without any probless.
However, if you stop the Application Program in the middle of 8 Grom
Address Write and manually change this field the next instruction will
change it again and unpredictable results will ooour since the Grom
address will most likely be wrong. Do not change the Grom address unlesa
you are experimenting or know where you are setting it to. :

by - Byte 8
This 1 byte field contains the LAST byte read from or written to
Grom/Gram. It does NOT contain the byte at the current Grom Addreas
aince Grom auto increments its address.(see Memory Windows on page 26
for information on viewing the current byte in Grom memory)

st - GPL 3tatus Byte
This 1 byte field contains a copy of the GPL Status byte which 1is
located in Scratch Pad Ram at >837C. When you or the Application Program
change the byte at >837C this field will also change and visa versa. 4
binary break down of the bits in this Status byte can be seen and edited

by pressing FCTN 8 ~ Registers. (see Registers Screen on page A5)
4
bp - Grom Break Point

Since the Explorer's powerful machine language interpreter handles all
tracking of Grom you can set a Break Point for any valid Grom address.
When the Grom address (AD) equals the value in the Break Point field the
Explorer will halt execution of the Application Program and display the
Explorer's Main Screen in the break point colors. Presiing any key will
restore the screen to its normal colora and release control to ‘you,
(also see Break Points on page 20 for more information)

M

17

¥dp Controls

—— eeee vdp ————
m= —=p= ‘o= mmee 3d 0723 - - - -
------ - == by 00 -~ - -
------ = == 8t 00 = = = o

~= ==ae o= ccov bp FFFPF = - = -

ad ~ Vdp Address

This 2 byte field contains the current Vdp read/write eddreas or write
only Vdp register being accessed. The specific Vdp operation taking
place is determined by the valuve written to >8C02, the port (Cpu DEBOry

address) for the Vdp processors Write Addresa Register which is
reflected in this field.

>0000 - >3FFF = a Read from Vdp Memory operation 'S
>4000 ~ >TFFF = a Write to Vdp Memcry operation (address >4000)
>BOxx - >8Txx = a Write to Ydp Register Operation

(1e: >81EC sets Vdp register 1 to >E0)
{ >8320 sets Vdp register 3 to >20)

Because the Vdp memory address is auto incrementsd by the Ydp Proceasor
this addreas will increase by one after each Vdp read or write 2006889,
Once again since Vdp ia a BOeROry mapped devioe there are a couple of
ports (Cpu memory addresses) that are used to tranafer 1 byte at a time
to and from Vdp memory and the Vdp Chip. When an Application Prograa
changes this Vdp address it must first write the least significant byte
of the Vdp address followed by the most signifiocant byte. These address
setting instructions Bay appear something like this:

SWPB R6 (set up least significant byte)
MOVB R6,®R15 (move LSB of R6 to >8C02)
SWFB R6 (set up wmost significant byte)
MOVB R6,*R15 (move MSB of R6 to >8C02)

The Explorer tracks and executes these set Vdp Addreas operations
without any problems., IMPORTANT - Do Not change the PC, W3 or Vdp AD
fields in the middle of a set Vdp Address operation. This will cause
future set Vdp Address operations to be out of ayno until a Vdp Read

data i» executed, which will reast the Vdp chip and the Explorer tc the
proper astate.

Byte

This 1 byte field contains the Laat byte read from or writtenm to Ydp
Ram. It DOES NOT contain the byte at the current Vdp Address (AD) =mince
Vdp auto increments its addreas after each read or write. (see Memory

Windows on page 26 for information on viewing the current byte in vdp
memcry) '

18

Vdp Controls continued

st -

o e e Vdp w=ece=a
------ —— e 8t 00 = = « -
------------ bp FFFF - - - -

¥dp Status
This fleld contains a copy of the Vdp Status register when the

Application Program screen was last displayed. This field 1s not updated
while the Explorer's Maln Screen is up, since it would Jjust be
displaying the Vdp Status of the Explorer and not the Application
Program, By toggling screens (CTRL 3) from time to time you can update
thia field. You can not edit the value in this field since this Vdp
register is a READ ONLY register {except to place zero's in it).

Break Point
Once again the Explorer's powerful machine language interpreter handles

all tracking of Vdp Memory. This adds a powerful funotlion to the
Explorer which allowa you to set some very specific break points for Vdp

acceases.

Break Point for a specified READ FROM VDP ADDRESS - >0000 thru >3FFF
ie: BP O2E0Q -~ halta Explorer on Ydp Read at address >02EQD

J
Break Point for a apecified WRITE TO VDP ADDRESS = >4000 thru >3FFF
ie: BP 42E0 - balts Explorer on Vdp Write at address >ozaq

Break Point for a specified WRITE TO VDP REGISTER = >B0xx thru >87xx
le: BP 81E0 - halts Explorer when Vdp register 1 getsa set lo JEQ

When the Vdp address (AD) equals the value in the Bremk Point field the
Explorer will halt execution cof the Application Program and diaplay the
Explorer's Main Screen in the break point colors. Pressing any key will
restore the sacreen to its normal c¢olors and release control to you.
{also see Break Points on the next page for more information)

Programmable Break Pointa

m

Cpu Grom vdp R

A L L 1 I | A L L 1 T] L I LT T | i m O EE .
]
L 7 A Bl L1 1] 1] 1 3 L L L] [

- . e L[] L L] |] [L -

bp 02B2 >> 6000 bp 8300 = = ~ —

3ince you are in complete control of the Application Progras you can
atop and start it at will, This could be copaidersd as unlimited break
points. However, the Explorer will allow you to program up to three
different specific Break Points, one for each type of mpewmory.

To program a Break Point, move the cursor to the BP field for any one of
the aemory types and type in the addrese you would like the Explorer to
halt on. These Break Points will halt the Explorer when it is in
Continuous Execution Mode (CTRL 2), no matter which screen ia displayed.
I1f the Application Program's ascreen is displayed, the Explorer will halt
exscution and bring up the Main Screen. The screen will be displayed in
the Break Point colors with two greater than aigns (>>) pointing to the
type of memory that caused the Break Pojnt. At thia time the Explorer ia
waiting for you to preass a key and acknowledge the Break point
condition. Once you press a key the normal Main screen colora will be
displayed and the two >> signs will be replaced with the letters BP.

The Explorer was designed two allow you to use the Single Execution key
(CTRL 1) to get past a break point. This also means that when yOou are
Single Executing (CTRL 1) a program, the Break Points will not be
activated and the screen will not change to the Break Point colorsa.

To turn OFF the Break Point(s) simply place a value in this field that
should never be reached by that type of memory. We have found that FFFF
works very well for all types of memory. The Cpu's PC should never be
equal to FFFF aince this is an odd address and it is also part of the
Load interrupt vector. Since Grom is a byte oriented memory mapped
device this could be a valid address but most of the modules that we
have seen only have valid Groa addresses up to FTFF. The exception to
this rule is a new German Extended Basic module which has a data table
that goes up to FFFF when you execute CALL APESOFT. In Vdp memory the
highest address set should never be above 8TFF since this is the higheat
valid Write to Vdp Register value.

Cpu Status

These fjields contain the binary representation of the Cpu's Status (ST)
register. Not all of the 16 bits in this register are active so only the
active bits are displayed here. These bits can be thought of as binary
On (1) and Off (0) switches. Alao the interrupt mask fleld can contain
hex values in the range of 0~F to indicate the current Hardware
interrupt level allowed.

Active bhits in the 9900 Cpu's Status Register:

L>A>EQC OV OP X Int Mask
0 0 0 ¢ 0 0 OnunumuinunouQOOO

1. - Logical Greater Than (L))
When this bit is set, equal to 1, it indicates that the last instruction
executed that effected this bit in the Cpu's Status reglster resulted in
a logical (unsigned number) greater then condition.

a - Arithmetioc Greater Than (Ai))
When this bit is set it indicates that the lasat 1nut.ruut1nn exeouted

that effected this bit 1in the Cpu's Status register resulted in an
arithmetic (signed number) greater than condition, o

e - Equal (EQ) “
When this bit is set it indicates that the last insatruption executed

that effected this bit in the Cpu's Status register raaultad with the
words or bytea operated upon being Equal or the word nr byte being zero.

o = Carry (C)
When this bit is set it indicates that the laat instruction executed

that effaected this bit in the Cpu'a Status register caused the most
significant bit of the word or byte operated upon to be carried out of
the operand into this bit in the Status regiszster.

o =~ Overflow (OV)

When this bit is set it indicates the the last instruction executed that

effected this bit in the Cpu'as Status register resulted in a too large

or too small condition for signed numbers.
p - Odd Parity (OP) !
Thias bit is used in Byte operationa. When set it indicates that the
that the parity of the destination byte operand of the last instruction
executed that effected this bit in the Cpu's Status register has an odd
parity. 044 parity means that the number of bits that ars on in the byte
add up to an odd value. Example: 07001100 (3 bita on) is odd parity and
01001101 (4 bits on) is even parity.

21

Cpu Status ocontinued

- ——— - Status

A Lok ol L I L e 11 1 i L 1 X 1] - P L]
- - . .y [P -_ T - ds N W
ey - —h— P R P - = X 1.

W i - .. e — - - 1 D'

- Extended Operatioa (X)

When this bit is set it indicates that that the Application Program flow
has been transferred to one of the IOP veotors to coantinue execution.
XOPs are Software controlled interrupts for the 9900 microprocesscr. On
the 99/4A only XOPs 0, 1 and 2 are implemented and on some ¥i'a only

X0Ps 0 and 2 are. XOP vectors are located in Cpu Rom starting at >0040
for level 0.

Level 0 20040
20042

>2804 - ¥Workspauce for unreleased Debugger Card
>0C1C - Program Counter {PC) for XOP O

Level 1 >0044
0046

>FFD8 - Workspace (WS) for XOP 1 (if implemented)
>FFF8 = Program Counter (PC) for XOP 1

Level 2 >0048
20044

>83A0 - Workaspaoce (WN3) for XOP 2
>8300 - Program Counter (PC) for XOP 2

Levels 3 thru 15 are not implemented on the 99/44.

Interrupt Mask Value

The hex value in this field represents the least significant 4 bits of
the Cpu's Status register. These bits set the highest level of Hardware
interrupt allowed by the $900 microprocessor. On the 99/4A an interrupt
can be triggered by an external peripheral devioce, the Vdp vertiocal
retrace (60 times & second) or the clock on the 9901 for CS1 & CS2. The
99/4A has only levels 0 & 1 and the non-maskable Load interrupt
implemented., Level 0 is tbhe reset interrupt (power up routine). Lavel 1
controls the Casaette Timing, Peripheral Interrupt Routines, Auto 3prite
Motion, Auto Sound Processing and the Quit Key. Level 1 alao exsoutes
the User Interrupt Routine pointed to by the addreass in >83CH, if it
does not contain gzero. The vectors that are in the level 2 position in
Rom are for a routine that blanks the screen after a certain amount of
inactive time, this is not an sotual Hardware Interrupt Level. The
interrupt vectors are located in Cpu Rom memory starting at >0000.

Level 0 »0000 = >83E0 - Workspace (WS) for Reset (Power Up routine)
»0002 = >0024 - Program Counter (PC) for Reset

Lavel 1 20004 = >83C0 -~ Workspace (WS) for Level 1 Interrupt
20006 = >0900 - Program Counter for Level 1 (most oonscles)

Hardware Lavels 2 thru 15 ars not implemsnted on the pﬂ/ll.

oo

22

- Tme= mm= Status | ro 0000 r% 0000 r8 0000 ri12 0000

T -T T f rt 0000 .,r5 0000 r9 0000 r13 0000
rz2 O0ODC ré 0000 r10 0000 rid 0000
r3 0000 T OO0 r11 0000 ri15 0000

—— - - . - - - - -t - s ae am
A - - e s - -_- - W e 1.

—— - - EErarER 000 SR - - o Ba

Vorkspace Ragisters e e
Cpu Status (Interrupt Mask) oontinued ——

r0 - r15 - Cpu's Vorkspaoce Megisters

Unlike any other utility program currently available for the 99/44, the
Explorer will execute interrupts during the normal flow of tha
Application Program. Whenever the Application Program or you set the IM
field to a value that is greater than zero, (LIMI 1 thru 15 instruction)
and interrupts are enabled (CTRL ¥) the Explorer will atop execution of
the current Application Program and begin execution of the interrupt
routine pointed to by the level 1 vectors. After completing the
interrupt routine the Explorer will continue execution of the current
Application Program where it left off.

To enable or disable interrupt execution press CTRL 4. The E or D
indicator after the im hex value will ochange accordingly.

Examples: im
0E = interrupt execution enabled
im ‘
0D = interrupt execution disabled -
NTE

When interrupts are enabled and the Explorer is running with the
Application Program's screen displayed, you may notige that the
Peripheral card lights will blink on and off., This happens because the
interrupt routine is searching through the peripherals for their
interrupt routines. When the Explorer is running with the Explorer's
Main Screen displayed, the screen interrupt takes control before the
peripheral acan 80 these lights will not come on, Al20, when the
interrupts are enabled the Application Program executes slower because
of the extra code in the interrupt routine. It is not neceasary to
ALWAYS have the interrupts enabled for proper execution of the
Application Program,

This portion of the Explorer's Main Screen coantains a ocopy of the
Application Program's ourrent Workspace Registers. When the Explorer's
Main Scoreen is displayed these registers are automatioally updated on
the acreen after sach and every instruction 13 executed. Any changes
that you make to these registers or the actual area of memory pointed to
by the Cpu WS fleld will affect the Appliocation Program's workspaos.

Generally speaking the workspace registers can contain moat anything
that the programmer wants. However, there are a few registers that must,
or will, contain certaln items for, or after, ths execution of some
instructions.

r0 = Bolds shift count for a some of the Shift instruotions

ri1 - Stores the Return address for the Branch and Link (BL)
instruction and the Effective Addreas after an XOP.

ri2 - Holds the CRU besase address during oru bit access instructions
{SBO, SBZ, TB, LDCR, STCR)

r13 - Stores the old Workspace Register (WS) vwalue after a context
awitoh, like the BLWP or X0P instruction or the execution of the
interrupt routines.

ri4 - Storea the old Program Counter Register (PC) value after a context
switch.

ri5 - Stores the old Cpu Status Register {(ST) value after a context
awitch,

(see the Scratch Pad Ram Memory Map in the Appendixes for additional
inforaation on the Interrupt workspgce at >83C0 and the GPL workspace at
>83R0) e

£
F]

vZ FO vk F8 vb F8
v3 OC vh 86 vl OF

v0

00
vl ECQ

Ydp Registers _

These eight 1 byte fields track the TMS 99184 Video Display Proceasora's
eight Write Only Regiastera. Theae Write Only Registers are used by the
TMS 99184 to set up the various Vdp modes, graphics, text, bit map ete.,
and the various table locationa, screen tabls, character table, aprite
attribute table ete.

v0 - Bit Map mode & External Vdp Chip enable

vl - AK/16K Vdp Ram, Screen Enable/Disable, Vdp retrace Interrupt, Text
mode, Multi-Color mode, Sprite Size & Sprite Magnification

vZ - Scresn Image Table base nddéaau = (timea >U00)

v3 - Color Table base address - (times >50)

v4 - Character Pattern Table base address - (timea >800)
¥v> - Sprite Attribute Table base address - {times >80)

vl ~ Sprite Pattern Table base address - {(tipes >800)

1
P

¥T - Text mode foreground color (moat significant nibble) lnd the Screen
oolor for all modes (least significant nibble)

You can edit any one of these fields and then press CTRL 3 to bring up
the Application Program's screen and impediately see what effect your
edit has had on the Application Program.

Pressing FCTN 8 - Registers will diaplay these registers with their
binary break down and the tables multiplied out to their proper base
addresases,

(Alsc see Registers Screen for more information on these registers)

Memory Pointer — c0000s

|
r
:
L
|
'
t
¥
t
4
|
|
|
|
i
i
|

00 Q0 00 00 0O GO 00 00 00 00 00 00
xx 00 00 00 00 00 00 0O 00 00 00 OO
00 00 00 00 00 00 00 00 00 OO0 00 0O Memory Window
60.00 00 00 00 00 00 00 00 00 00 00
00 00 G0 00 00 00 0O 00 00 00 00 00
00 00 00 00 00 00 00 00 00 0D 00 00

The three Memory Windows are a very powerful part of the Explorer. Thase
Windows can be set to any valid address for thes specified type of msmory
{Cpu, Vdp, Grom/Gram) either by you or the Application Program. Pressing
FCTN 1 will toggle the Memory Window display between the three Memory
Windows. Thess Windowas can be any combination of Cpu, Grom or Vdp memory
types as well as static or dynamioally tracked. Using the Memory Edit
function of the Explorer allows yuu to easily examine (any area) and
change (Ram, Gram) areas of mesory as you wish. These areas of memory
¢an be displayed in Hexadecimal, ASCII or ASCII with the Basic Bias. The
Memcory Window has a Memory Pointer and Mode Indicator sbove it that can
be edited by you. This Memory Pointer will also updats itmelf as you
move the cursor around in the Memory ¥Window to indicate the exact
addreas that the cursor is sitting on. |

o000a -~ Memory Window Pointer
This pointer ia actually three different fields that consist of the
following itema:

o ST
This indicates which type of memory is diaplayed in the memory block.
You can place any one of the following three alpha characters in this
field and the memory blook will instantly update itself and diaplay that
type of memory:

¢ = Cpu Memory (Rom/Ram)

£ = Grom/Gram Memory

¥ = Vdp Ram Memory

~0000-

When tbe curaor is NOT in the memory block or when the Explorer is in
Continuous Execution mode, this indicates the current start address for
the memory block displayed. When the ocursor is in the msmory blook this
indicates the exact address that the cursor is sitting on. The valid
ranges for the different types of memory are as follows:

>0000 ~ FFFF for Cpu Memory
20000 ~ FFFF for Gros Memory
X000 =~ 3IFFF for Ydp Memory

00 00 00 00 00 0C 00 00 GO 00 0O 00
xx 00 00 00 00 OO0 00 00 00 00 OO0 00
00 0G 00 00 GO GO 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 OC GG 00 GO OO0 OO0
00 00 00 00 00 00 00 GO 00 00 OO OO0

—————
This indicateas the MODE for the memory blook. The Static mode (S) will
leave the memory block exactly where you place it. The Dynamic (D) mode
allows the memory block to foliow the Application Program's access to
the type of memory diaplayed as follows:

0-==~d

If the Type indicator is a C (Cpu Rom/Ram memory) and the mode
indicator is a D (dynamic) the memory block will automatically
follow the Cpu's PC register.

g-===d

If the Type indicator is a G (Grom/Gram memory) and the sode
indicator is a D (dynamic) the memory block will automatically
follow the Grom Addreas (AD). ;

Veououd , _

If the Type indicator is a V {(Vdp Ram nanarﬂ‘imd the =mode
indicator is a D (dynamic) the memory block will automatically

follow the Vdp Address {(AD). N

NOTE: When the displayed Memory Window Mode is Dynamic the address
that is being tracked starts on the second row of the Memory
Window. This allows you to see the 12 bytes prior to the current
tracked addreas, |

-—‘-—-d L L L L - sl ik g L ¢ F 1 4 § [3 |

Actual byte at
tracked addreas 00 00

'I_H

To change the Mode for the displayed Memory Window aimply place an S or
D in this field. Each ¢one of the three Windows can have their own Mode.

FCTE1 PFCYN 2 FCTE3 PFCYE A
FCTN-6 ' FCTM O PFCTN O FCTN =

Memory Window & Memory Editor Keys —- - et

The Following Keys Effect The Memory Window Display

FCTE t - Toggles the display to one of the 3 different Memory Windows,

FCIN 2 - Changes the size of the H?lnry Window display to one of the §
7 »aln sizes; -

FCT¥ 3 - Changes the size of the HNext Instruction display ares which
affects the size of the Memory Window display.

FCTIN A -~ Increases the start address of the Memory Window by one full
Page (Window). The amount of inorease automatically compensates
for the various Memory Window sizes.

FCTE 6 ~ Decreases the start address of the Mesory Window display by one
full page (Window). YThe amount of decrease automatically
compensates for the various Memory Window siszes.

FCTR 9 -~ Toggles you in and out of the Edit Memcry Mode. Or, to put it
another way, it toggles you between editing of memory and
editing of fields. .

i

FCYN O - Toggles the Basic Bias On and Off., When this Bias 1as On, the
words "BASIC BIAS" will be displayed in the middle of the top
double line (=). The bias OMNLY effescts the ASCII display of the
Mexory Window by offsetting the ASCII display with >60 to match
the Basic environments. This Bilas is most useful for editing

the Screen Image area of Vdp Ram when you are in the Basic or
Extended Basioc environments. With thia Bias you oan also see

the various ERROR messages in Grom for the two Basic languages,

FCTN = = Togglea the Memory Window display between Hexadecimal values
and their ASCII characters,

Hemory Editor

The Explorer contains a very powerful and essy to use + - y Editor.
To enter the Memory Editor when the cursor 13 in one of t.. :3sl)lds at
the top portion of the screen (above the double line =} just prezs FCTN
9. To exit the Memory Editor (when the cursor i1s in the Memcry Window)
you also press FCTN 9. The FCTN 9 key on the Main 3creen toggles you
between editing the fields and editing memory.

This Memory Editor allows you to examine any area and type of memory in
your computer system. It was deasigned with future expansion in mind in
that 1t treats ALL areas of Cpu memory as if it is Ram and ALL areas of
Gror memory as if it is Gram (Auto Incrementing Graphics Ram the
complement to Grom). By thia we mean that the Explorer will allow you to
attenpt to write to any area of memory. After you have typed in the

" value or character into a memory location the Explorer attempts to write
that value to the semory location and then rereads and redisplays the
current Memory Window. If the location was Ram or Gras the’Memory Window
will reflect the change, if the location was Rom or Grom t@n change will
not be displayed. With this feature any future Ram or Gras additions or
modifications to your aystems can sasily be edited. (Note: There
currently ian't any GRAM in our systems) N

The size of the Memory Window/Edit Area can be changed lt!lnf time by
aimply pressing FCTN 2. There are & main sizes available. 30, when you
have resched the largest size (full screen) and you press FCTN | again
the Memory Window will automatically drop back down to the smalleast

size.

The Type of msemory displayed (Cpu, Grom, Vdp) ocan be changed at any time
by pressing FCTN 1 which brings in the next Memory Window you have set,.
Or, you can leave the Memory Rdit sode and plaocs the ocursor at the start
of the Memory Pointer field (00000s) and input & C,0 or ¥ there.

NOTE: If your Windows are in Dynamic (D) Mode pressing FCTR 1 will
display the area of memory that is being tracked. If you do not want the
address to change as you toggle between Memory Windows (FCTN 1) simply
change them to Statio (S) Moda.

£

29

e e ———
UP DOV LEFT RIGHT
SHIFT UP SHIFT DOWNE SHIFY LEFT SHIFT RIGHT

i il ik

Memory Editor continued

The Explorer's Memory Bditor is a FULL SCREEN type of editor. Thia
allows you to move the cursor around in the Memory Window with the four
arrows keys (FCIN Up, Down, Left & Right arrows). As you move the
cursor around in the Memory Window the address in the Memory Pointer
(c0000s) will update itself and indicate the exaat address that the
cursor 1is currently sitting on. Also ALL of the keys in the Memory
Editor will auto repeat if you hold them down.

Pressing the UP arrow key when the cursor is sitting on the Top row of
the Memory Window will allow you to soroll the Memory Window address and
display down 12 bytes (1 row). Conversely, preasing the DOWN arrow key
when the cursor is on the Bottom row of the Memory Window will allow you
to scroll the Memory Window address and display up 12 bytea {1 row).

Pressing the LEFT arrow key when the cursor is aitting in the upper left
hand corner {(first byte of the Memory Window) will allow you to ascroll
the Memory Window start address and display down 1 byte. Conversely,
pressing the RIGHT arrow key when the cursor is aitting in the lower
right band corner (last byte of the Mesory Window) will allow to soroll
the Memory Window address and display up 1 byte.

The Explorer also haa a unique feature in its Memory Editor in that you
¢an lock the cursor on a given byte and drag the meacry display around
in the Window boundaries. To loock the cursor on a given byte {address)
Juat preas the FCTN and SEIFT keys down at the same tims as you Dpreas
the arrow keys. Thias allows you to drag a given byte to any location in
the Window. Thia is very useful for positioning a given byte in the home
{upper right hand oorner) position of the Window.

We would like to recommend at this time that you play with the various
FCTIN, Arrow and Shift keys of the Explorer's Memory Window and Memory
Editor. This will help you to beocome more familiar and ocomfortable with
its powerful features and to make future Explorations sasier.

30

Search String

i

0000~ at 0000 fm 0000 ~==ecomn==-

00 00 0O 00 00 00 00 OO 00 0O OO0 0O

00 00 GO 00 GO 00 00 0O OGO 00 OO0 OC

00 00 00 00 00 00 00 00 00 00 00 OO0)Memory display
00 00 00 00 00 00 00 00 00 OO0 00 0O

00 00 00 00 00 00 00 0C 00 00 00

Search Function _ ——— e N

The Explorer also contains a very powerful and easy tc¢ use Search Function.
Thia function allows you to search through any type of memory, Cpu, Grom or
Vdp, in Hexadecimal, ASCII or ASCII with Basic Bilas. It also allows you to
search forwards, lowv to high address range, or backwards, high to low addreas
range. To activate the Search Function simply follow thess steps:

Salect the type of memory you wish to search through by placing a C, G
or ¥ in the Memory Pointer field or by preasing FCTN 1 until the proper
type of memory is displayed. You muat do this PRICR to activating the
Search Function.

2. Press FCYN 5 - Search - to activate the 3Search Function,

3. Input the Start lddﬁu in the ST (Start) rield and the End Address in
the PN (Finish) field and ther press Enter or the Down lﬁruu.

b, Select either Hex display for a Hexadecimal search or ASCII display for
a ASCII search by pressing FCTN = - ASCI1/REX Toggle. - 1

5. If you have selected ASCII, you can select either normal ASCII or ASCII
with the Basic Bias by pressing FCTN G - Basic Bias On/Off,.

6. Type in the Hex value(s)} or ASCII letters, according to the display, and
then move the cursor back one apace (left arrow key) to place it ON TOP
OF THE LAST CHARACTER OR BYTE in your search string, and now presa ENTER
to atart the search,

Example: g0000=- st 2000 fn 5TFF ==vecce-

T I B 4 5 I « = s

Preasing Enter with the curaor sitting ON TOP OF the C in 'BASIC' will
instruct the Explorer to search through Grom (G) memory from >20Q0
through >S57FF rfor the firat occurrence of 'TI BASIC' and to display ita
start location in the Memory Window and Memory Polnter. If you place
your curaor on top of the I in 'TI' the Explorer will ignore the reat of
the search string and search for the firast occurrence of 'TI' in the
selected Grom semory range.

31

Ssarch Function Continuned

g2152- st 2153 fn STPY ~ceccaa-
T .I - 5131@....
T I B A S ICB +
| | ' T T
* b I-l-ll &

*

[] -l B .y

L]

When the search atring is found the Explorer will automatically display
that area of msemory in the Memory Window. It will also update the Memory
Pointer to the addreass where your search string was found. It #lso
adjusta the Search Function Start Address (3T) to allow you to just
press Enter again to search for the next coourrence. If you are
searohing forward through memory it will set the Start Address (8T) to
one address higher than the Memory Pointer value. If you are searching
backwards through memory it will set the Start Address (ST) to one
address lower than the Hemory Pointer value.

If the asarch atring is not found the Explorer will NOT update the
Memory Pointer, Memory Window or Start Address. If the first line of the
Memory Window, up to and including the oursor location, doea not match
the search atring display then your string was NOT found.

To change the ST or FN fields when the cursor is in the search string
area just press the Up arrow key. When you are finished with the Search
Function juat press PCTN S agaln to exit it. NOTE: This is the ONLY way
to leave the Search Funotion and to resume normal operation of the
Explorer.

When you exit the Search Function the Explorer will ressmber the search
string you input and the Start and Finish addresses where it left off.
S50, the next time you enter the Search funotion thase items will
automatically be displayed. Hnuﬂgr. it does not ohange the current
momory type to the® one you ssarched through before. Thia allows you to
easily search through Cpu, Groa and Vdp for the same item(s).

| | 1,4
The Search Funotion is an independent funotion of the Explorer. When it
is activated most of the other functions of the Explorer cannot be
sccessed (ie: FCTN 7 Options, CTRL 2 Continumous Execution etc.). Trying
to activate one of these functions will cause the screen to change to
its Error colors, which indicates that you need to leave the Search
Function (press FCTN 5 again) before acceasing this other function.

32

"

4

Ll

- Groa Lib 9800 00000000

ey Ehky e
iy i i nighla A win

EENEE

I
!
|
I

-
—
-
- . - - L] L L]
L
-

Grom Library & Instruction Counter e

Grom Lib 9800 - Grom Library Page

This field wans added to the Explorer for two reasons. First to allow you
to watch the M¥A's operating search through the Grom Library for a
particular CALL. And secondly for fuiure expansion of your ocomputer
aystem. There currently ian't a Grom Library Expansion box avallable for
your computer bdut there may be one in the near future and the Explorer
is fully set up to handle it and GRAM simulators.

You may bave noticed at one time or another, when ycu removed or

inserted a module that the REVIEW MODULE LIBRARY message came up in your
menu. iAnd, you probably have tried to make that sslection to see what
bappena. Unfortunately, since there wasn’t a Grom Library Expansion box
hooked up, nothing happened, You can, however, watoh TI Basic attespt to

* search through the nonexistent Grom Library. To do this simply load the
Explorer into the Basic environment and start it up. When the cursor
reappears and you ars in Command/Edit mode of Basic slowly type in an
invalid CALL such as, CALL MG and press Enter. is the computer searches
for this invalild CALL you will notice that this field iIs updated to each
of the Library pages until Baasilc can not find the CALL and returns the
BAD NAME error message. (There will be more documentatiom on this when
a Grom Library box is available) '

80000000 -~ Instruotion Counter

This four Byte (eight nibble or 32 bit) field is the Instruction Counter
in hexadecimal that counts up to >FFFFFFFF before it ressts itself. You
cah eodit this field at any time and set it to any value or reaset it back
to zero. This field increments itself by one each time the Explorer
exacutea a 99500 MHachine Language Instruction. It is displayed on the
Maln Soreen in hexadecimal, for purposes of speed, and it 1a also
displayesd on the Options screen in Decimal format. This way you oan
aimply press PCTHN T at any time to see the actual nusber of instruotions
{in decimal) executed 30 far. It is also handy as a quick bhexadecimal
deoimal number converter for converting large hex numbders inteo thelr
decimal value. >FFPFFFFF equals 4,294,967,295 which is also the address
range of a true 32 bit computer - 3 Gigabytea. :

33

Instruction Disasseably

R e .
DBA6G MOVB R6, €>0802(R13)

E

- or

b ject DBA6 MOVB R, €>0402(R13) Source
Code <nnoz 7‘0«1-
DB60 MOVE €>83ED, €>0402(R13)

The last display area on the Expiorer's Main soreen is the Next
Instruotion to be executed. Thia area ocan be displayed in two sizes,
single line or three lines. The single line display will always display
the ocomplete Next instruotion, no matter how many objeot oode words make
up the instruction. The three line diaplay ocar display up to three
instructions at a time if the firat two instruotion are only one word of
object code in length.

Az each instruction is exscuted this area is updated and the next
instruction to be exeouted will be diasplayed. This display area

dynamically follows the Cpu’a PC register and the ares of mesory that
the PC pointas to.

If you place the PC field on an area of Cpu Ram, say >2900, and then
place the Memory Window at ¢2900s, you can edit the values in the Memory
Window and watch the disassembly display change to the new instruotion.

EXAMPLE: Cpu

Input —— wa 2800
Input —— pc 2900
St =w~ee = any value is ok

bp FFFF
Set 62900s Grom Lib 98~ ecemccn--
T7D6 100k 20 00 00 o= —o oo = o oo oo oo
which ———————————————
equals 0420 BLWP £>0000

By inputting the values ipdicated and typing in >08 20 00 00 into the
Memory Window you will set the next instruction to do a Branoh and Load
Workspace Pointer €>0000. This will begin execution of the Po Up
routine when you press CTRL ! or CTRL 2. Go ahead and press CTRL 1 and
note R13, R1% and K15 of the new Workspace.

i '

34

-— Number Converter

hex FFFF + 0000 = OOOOFFFF

dese 65535 + 00000 = 0000065535
oin TTIT191T 11114111 ear 0 over O

+ 00000000 00000000 + add a and
- sub o or

= 00000000 00000000 ® mul x xor
It 111111 / div n not

— Explorer Options —--- !

‘cmm 1100 0 E

Load Charactsrs h 3 atep speed
Execute Key Scan h h high speed

Colors text/sorn Counter
Status Screen FA
Break Point 1A 400000000000

Error Condition Fb

The Explorer's Uption Soreen actually contains four seajions, the Number
Coaverter, The Cru Base switoch, the Optiona section and the decimal Counter.
The HNumber Converter has the same mathematioceal logic as the 9900
Mioroprooessor. The Cru Base switoh actually performs two funotiona., First it
allowa you to turn On (1) and Off (0) different Cru bits. Secondly it Reads
back the¢ selsoted Cru Base (bit) and diaplays it, The Option# seotion of this
sareen sllows you to agonfigure the Explorer to your tastes -nd to save these
Options on the Explorer Disk.

To motivats thia screen just presas FCTN 7T - Options - from either of the
other two Explorer Screens (Main or Registers), while the Explorer is NOT
Continuously Exeouting (CTRL 2) an Application Program. Once you have
activated this screen you can return to the Explorer's Main Screen by

pressing FCIN 7 again.

- Mumder Converter

Operation hax FFFF _+ 0000 = OOOOFFPFF
Indicator

dec 65535 '+ 00000 = 0000065535
bin 11111111 M 11111y car 0 owvr 0

\ "+ 00000000 00000000 +add a and Operation
. - gub © or Sslsction
= 00000000 00000000 & il x xor Fields

TTTH1111 1111111 / div n pot
Iamber Converter

The Explorer's Number Converter will convert Hexadecimal, Decismsl and
Binary numbers and perfors the mathemmtical and relational operations of
Add, 3Subtraot, Multiply, Divide, AND, OR, XOR and NOT. The valid range
for the different numder bases ias >0000 thru >FFFF, 0 thru 65535 and
0000000000000000 thru 11117111111111111. This Number Converter operates
dynamioally in that ALL of the Number Converter fields are automatioslly
updated as you type in EACH oharaocter, so type alow.

When this soreen is active the aotion performed by the the FCTN 9 key is
ochanged. Pressing FCTN 9 takes your oursor from wherever it is on the
screen and places it on the + sign in the mathematical and relational
selection fields. When the cursor is already on one of these fields,
presaing FCTN 9 will place the oursor back to the field that it was in.

The mathematioal and relational operations have the same logioc as the
9900 miocroprooessor. What this means is that they calculate the same
result as the corresponding 9900 instruction., All of the mathematical
and All of the relational operations except NOT operate on two numbers.
The NOT relation works on a single number and the Explorer is set up to
NOT a value that is in the input field fullnu:ln; the opsration
indicator,

The CAR O and OVR 0 indicators above the mathematical and relational
select.ion fields simulate the CARRY and OVERFLOW bits of the Cpu's
Status Register. These bits will be set or oleared on the various
operations aoccording to the operation performed and its result.

haber Conversioa

To perfora just a ltn:lght number conversion uinply type in the pumber
intc the appropriate nusber base field., The Explorer will dynamically
convert the number as you type it in. The proper conversion will be
displayed in the the other two number bases's oorresponding input
fislds. By looking in these fields for the result instead of the fields
following the = sign you will not have to worry about the -ltha-ntiull
or relational cperation {ndicator.

Example - Convert >2006 into Dec and Bin

Input hex 0000 + 2006 = 00002006

Result . dec 00000 + 08198 = 0000008198
bin 00000000 00000000 ocar 0 ovr O
Result +« 00100000 00000110 + add a and
e - sub o or
= 00000000 00000000 ® mul x xor
00100000 0000017110 / div n not

NMathomationl Operations

To perfors a mathemmtical operation (add, sub, mul or div) input the two
values into their pmtr number bass input fields and press FCTN 9. With
the cursor sitting'on the + sign in the mathematical and relational
selection fields you can move it around to the proper -opsration. When
the cursor is on the proper operation simply pruq ENTER and that
operation will be performed. Once an operation is selected the Explorer
autommtioally exeocutes it whenever you input values. -

E
Rxample - Divide 16500 by 8198 |
Quotient

hex n'ﬂT‘ / 2006 =

t dec 'iiszo_o / 08198 =

bin 01000000 01110100
/ 00100000 00000110

Remainder

car 0 ovr 0
+ add a and
- sub o or
.:' Ml x xor

/ div n not yhut

So 8198 goes into 16500 2 times with a resainder of 108,

Quot ient ————
Remsinder

= 00000000 00000010
00100000 01101000

37

el

Nusber Converter Comtiwved

-

1ho].tl::l.l'.-nl:l Operations

Performing a relational cperation (AND, OR, IOR or NOT) is much the same
as perforaing a mathesatical operation. Input the two values into their
proper number baase input fields and press FCTN 9. With the ocursor
sitting on the + sign in the mathematioal and relational selection
fislde you ocan move it around to the proper relational operation. When

" the cursor is on the proper operation saimply press BENTER and that

operation will be performed.

Example - Perform J42E0 AND >3FFF

Input ., hex IEO a 3FFF = 000002R0 Reault
des 17120 a 16383 » 0000000736 Result

bin 01000010 11100000 oar 0 ovr O
a 001111911 11511111 + adé o and Seleot

- pub o or

= 00000000 00000000 * mul x xOr

Reaulit 00000010 11100000 / div n not

So this AND mesks off the two high order bits and leaves us with >02E0

The NOT operation is a single number operation. 30 the Explorer sxpecis
the value for a NOT to be in the input flelds AFTER the Operation

Indioator

Example - NOT >BCDR

Input . hex ewe= n ;cnz = 00008321 Result
degc ~=~we n 88350 = 0000017185 Result
bin weeecvcen cancncns car 0 ovr 0
n 10111100 11011110 + add a2 and
| - sub o or
= 00000000 00000000 ® mul x xor
Result ——— 01000011 00100001 / div g not 91:::1:

30 HOT turns Off the bite that are On, and On the bita that are Off

38

f ————— i .. A i Fam — P N e

T oo

AEIADECIMAL TO CAlLL PEEX or CALL LOAD

CALL FEEX or CALL LOAD to HEXADECIMAI

&

Bumber Coaverter Coantimued

Hexadeoimal to CALL PEEX or CALL LOAD J
Converting Hex numbers into their Decimal CALL PEEK or CALL LOCAD
addresses is a simple matter if you keep in mind the following rule. IF
the Hex number is gresater than >8000 then subtract it from Zero and loock
at the result. IF it is less than >800C just do a straight number
conversion. In this example the Hex number is greater than >8000 so we
will subtract it from Zero. To do this input four zero's in the firat
Hex field, input 83E0 in the second Hex field, press FCTN 9, move the

cursor down to - {sub) and press ENTER.
Example - Convert >83E0 into its Decimal CALL PEEE addreas.

Input hex 0000 - B3ED g0007C

. dec 00000 - 33760 = Q000031776 Result

So >83E0 can be peeked into with CALL PEEK(~31776,A,B)

CALL PEEX or CALL LOAD to Bexadecimal
Converting CALL PEEK or CALL LOAD values into their Hex locations is
vory similar to the above conversion. The rule to keep in mind here is -
IF the CALL PEEK or CALL LOAD value is NOT negative, just do a straight
number conversion. IF the CALL PEEK or CALL LOAD value LS negative then
subtract the value from Zero {(negative number conversion) and look at
the result. So lets convert the above result back into its Hex location.

Example -~ Convert CALL PEEK(-317T6,A,B) into its Hex lnuatiuﬁ_

hex 0000 ~ 7C20° = O0OOO0B3ED

Huault
Input dec 00000 - 31776 = GOGO0O33T6D
AN /

S0 CALL PEEK{-31776,A,B) iz peeking into >83E0
NOTE: The Decimal input fields perform a range check as you input

values, So, if you try to input a Decimal value greater than 65535 the
screen will change to its Error Condition Colors. ‘

39

Cru Base

L]

Explorer Optiona

Cru Base 1100 O

Cru Base Switch

The Cru Base function of the Explorer allows you Read and Set the
different Cru Bita in the 99/8A. Cru Bits are just a bit level method of
I/0 but they can be Jolned together to form bytes or words. In the
console they are used for interrupt detection, keyboard and joystick
input and the cassette controls. In the peripheral devices they can be
used for anything the hardware and scftware would like. In many cases
they are used a= binary switches to turn on and off selected items. For
example, in the disk controller card there are designated bits
(switohes) to select the proper drive, side and to strobe the motor on.

By setting the Cru PBase ['ield to a speciflied Cru addreas you can Read
the Cru bit in the bit fleld. Also, after the specified Cru address has
been aet you can move the cursor to the bit field and input a 1 or a 0
to turn On or Off the specified bit {depending on the particular
hardware),

The Explorer ALWAYS reads and redisplays the specified bit, however,
some Cru bits can be set but not read as being set. This is a property
of the hardware that the Cru Base addreas is set on. For exasple, if you
have a TI RS232 Card you can turn it on by writing a ' to Cru Base 1300,
But, the Explorer will read back a zero even though the card is on. Now
set the Cru Base address to 130E and input a 1 into the bit field. This
will turn on the RS232 Card light and the Explorer will read back a 1,
To turn the card off simply input a zero in the Bit field for Cru Base
130E and Cru Base 1300.

The value that is placed in the Cru Base address field is the same as
the one you would place in Workspace Register 12 (R12) for a TB 0, SBO 0
or SBZ 0 instruction. To obtain this address you multiply the Cru Bit
nupnber that you want to Read or Set by 2 and add the Cru Base addresa to
it.
Examples: Read Cru Bit 11 in the RSZ232 Card.

e ® 11 =22 22 = >16 21300 + >16 = Cru Base 1316

¥hat Cru Bit number turna on the RS5232 1ight?
>130B - 1300 = XOE >0E = 1% 1% / 2 = Bit number 7

In many locations in the 44 operating aystem you will find instructions
like - TB O JNE >Xxxx Theae inatructiona are testing Cru bit
number ¢ of the Cru Base that is in R12 of the Workspace. The tesat
result is reflected in the E (Equal) bit of the Cpu Status register. If
the E bit is a 1 after the TB 0 inatruotion is executed the Cru bit was
set (1) if it is a 0 the Cru bit was not set (0). You can fool the
Application Program by changing the E bit immediately after the TB
irstrugtion 1s executed.

L]

A0

Cru Base Continued

.
LOCKING FOR DEYICE SERVICE ROUTINES

Many of the peripheral cards and devices contain a Device Service
Routine (DSR). This is = fancy name for the 9900 Assembly Language
Object code that is burned into a Rom chip on the card or device. When
the card or device is turned on this DSR code is paged into Cpu mwemory
at >4000 through >5FFF s0 the 9900 micro can access and execute it.

With the Explorer it 1s a simple matter to find out where all of the
DSRes are located in your system, TI set up the Cru Bases and peripheral
cards in such a way that each card resides on a >100 boundary starting
at Cru Base >1000. S0 the firat DSR can reaide at Cru Base >1000, the
next at >1100 followed by >1200 etc.

To find the different DSRs in your system follow these steps.

1. On the Main Screen set the memory pointer to c#0008 with ASCII

display (Basic Biaa 0Off).

2. Preas FCTN 7 - move the cursor down to tha Cru Base field and ioput

1600.

3. Move the cursor to the Bit field and input a 1.

4. Press FCTR 7 and look in the memory window. If its all dots there's
no DSR at this Cru Base. If there is something there usg ‘the FCTN 4
Page Up and FCTN 6 Page Down to look arcund.

5. Someplace near the beginngng (>3016) you should find the different
DSR Link Namea in the code (ie: DSEV1, R3232, PIO, TP, etc.) or the
CALLa that the card may contain (CALL FILES etc). This and the Cru
Base map on the next page will help you identify which card'a DSR you
are looking at.

6. When you are finished locking at this DSR press FCTH T and input a
zer¢ 1n tha Bit field to turn the card Off.

7. Move the cursor to the Cru DPase field and input the rext Cru Baase
address (add >100 to the previous Cru Base address) and continue with
nusber 3 in these steps,

NOTE: The DSRs are ALWAYS turned on by writing a 1 to the loweat Cru
Base address for that device (1e: 1000, 1100, 1200, 1300 eta.). The
other Cru Base addresses in the range for the card are the 128 Cru bits
assigned to each peripheral apace (ie: 1102, 1104, 1106 etc.). But most
off the peripheral devices do not use all 128 bita. They usually only use
6 - 24 bita. Also, the selected card's 1ight may or may not come on when
you turn on the DSR. It depends on the hardware design.

L]
i-'

41

CRU BASE ASSIGNMENT MAP

Crma Base Continued —

Cru Base Assignments

Cru Base TI Asalgnment Your Systea

0000 ~ O3FE Internal Conacle Use (see Appendix)
0800 - OFFE unaassigned (not scanned by DSR Link)
1000 - 10FE unasaigned - Production Tester
1100 - 11FE Floppy Diak Controller

1200 - 12FE Internal Modem

1300 - 13FER RS232 1 & 2 & PIO 1

15300 - 14FE unaas igned

1500 - 15FE RS232 3 & & & PIO 2

1600 - 16FE unassigned

1700 - 1TFE Unreleased HEX-BUS Adapter

1800 - 1BFE TI Thersal Printer

1900 ~ 19FE EPROM Programmer)
1400 ~ 1AFE unassigned

1800 - 1BFE Unreleased T1 Debugger Board

1C00 ~ 1CFE Video Controller | "
1000 = 1DFE IEEE 488 Controller Card _
1EQ0Q0 - 1EFE uhaasigned

1F00 -~ 1FFE P-Code Card

The Cru Base addresses go up to >1FFE, Cru Base 2000 wraps arcund so you
are actually looking at C0O00. To teat thia, input a Cru Base of 3100
{1100+2000) and write a 1 to the Bit field and your disk controller
light will come on. Don't forget to turn it back Off,

NOTE: To enable RS232 3 & 4 and PIO 2 requires a aspecial modification to
your RS232 Card. The DSR Link names are in the Card but the bhardware
nust be modified to place it at Cru Base 1500 to accesas them. Thias
modification allows you to have 2 R3S232 Cards in your systes for a tatll
of § RS5232 ports and 2 PIO ports.

82

i
i Y

Load Characters h 8 step speed
Execute Key Scan h h high speed

Options

Load Charscters

The Load Characters Option of the Explorer will place character set
loading in one of two modes. The H mode loads the character sets at full
speed. This 1s very handy for Basic and Extended Basic since they
Reload the character set after each completed command in the
Command/Edit mode or at the completion of a running program. When the
mode is set to S the Explorer will track each byte of the character set
as It 1s moved out to Vdp Ram. After you have watched the lengthy
process of loading a character set a few times (S mode), we are sure
that you will appreciate the default H mode.

NOTE: The H mode has no effect when an Application Program, such as the
Power Up routine or the TE II Module, DOES NOT use one of the GPL
subroutines for loading the character seta.

Execute Iey Scan
The Execute Key Scan Option of the Explorer allows you to speed up the
key scan process by turning off the debounce delay loop. When thia
Option is set tco the H mode the Explorer will automatically zero out the
key acan's debounce delay loop counter and continue on with the key
scan routine, If this Option is set to the S mode the Explorer will NOT
zero out the debounce delay loop so inputting key strokes-becomes a very
alow operation. ;

If you would like to watoh the complete key scan routine ﬁ&nply place an

3 in this field. However, after a few times through the kéy scan we're

sure you will prefer the H mode for most Application Progrgm execution.

Since the Explorer is operating your computer and Application Program in
interpretive mode the inputting of key strokes is slower than normal. To
properly lnput key strokes with the Application Program screen displayed
juat hold down the desired key until the cursor diaappears. When the
cursor reappears you can input the next key stroke. If you are inputting
two or more consecutive key strokes of the same character wailt for a
second after the cursor reappears before pressing the key again, This
preveuts the application programs auto repeat delay counter from
activating. When it does active it takes a long time before the cursor
disappears. If it does activate Jjust let up on the key, wait a asecond

and then press it down again, Y

43

Colors text/acrn Counter
Status Screen Fi
Break Peint 1A do0000000000

Error GCondition F6

‘Color Options & Counter

Colors

The Colors Option of the Explorer allows you to set yocur own Text and
Screen colors for the Explorer!s Status screens (all screens). You can
alao set your own Break Point colors and Error Condition colora. The
Break Point colors are the colors that the Explorer changesa the screen
to whenever a Programmable Break Point is encountered. The Error
Condition colors are the colors that the Explorer changes the screen to
whenever you try to input an invalid value or press an invalid key.

These colors are set in a 2 nibble field. The first nibble ias the Text
color and the second nibble ia the Screen color. The ocolor values are
the same aa the ones used in Aasembly Language (see table below) and
match the values that would be written to Vdp register 7 for Text Mode.
NOTE: If you type in the same value for the Statua Screen's Text and
Sereen colors you will not be able to see the Text any more, However,
the Explorer will not leave the field until you press Enter or an Arrow
key 80 you can just input a different value for the screen oolor and
your Text will reappear, if its not transparent (0)

Color VYalues
0 =z Transparent 8§ z Medium Red
1 = Black g = Light HRed
2 = Medjua Green A = Dark Yellow
3 = Light Green B = Light Yellow
4 = Dark Blue C (= Dark Green
5 = Light Blue D = Magenta
6 = Dark Red E = Gray
T = Cyan F = White

Save Options - CYRL 9
After you have set the the H S Options and Colors you oan save these
settings to the Explorer Disk. The Explorer will then use these settings
as the default settings whenever it is loaded. To Save your settings,
irst make sure the Options Screen is displayed. Then remove the write
protect tab from the Explorer diakette. Next place the Explorer diask
BACK IN DRIVE 1 and preas CTRL 9. And finally, put the write protect tab
back on the Explorer disk. Your settings will not be saved if the
Explorer disk is not in drive 1 or the write protect tab is on the disk.

Counter
This display area is the decimal conversion of the Hexadecimal Counter
on the Main Screen. You can not edit this fleld, it was placed here so
that you didn't have to convert the Hex counter yourself. ‘

e

Ey

EXPLORER®S REGISTERS SCREEN

——————— ————-StaLua“Registera - ——

hgh grt cnd car ovf _
Gs 0 O © ¢ © o O @O 00

int Srw cnc fifth sprite number
Vs 1 t{ o0 o O OO0 O 0o Co

— YDP Registers

bit ext
vO O 0 0 O 0 0 0 0 00

16k scn int txt mlt sze mag
v1 1 1 1 0 ©6 0 ©0 0 EO|

v2 0000 0000 ©OC Bereen image 0000
v3 0000 111¢ OE color table 0380
vl 0000 0001 01 char pattern 0800
v5 0000 0110 06 spri attribu 0300
vh 0000 0000 ©0 spri pattern 0000

vT 1111 101 FS txt/sern clr ’

On the Explorer's Registers Screen you will find the hex value and binary
break down of the Gpl Status byte, the Vdp Status Register and Vdp Reglsters
0 and 1. This screen also contains the hex value, binary value’and the actual
table addresses for Vdp registers 2 through 6. For completeness Vdp Register
7 was also included here. _ 3

Not all of the bits in the Gpl Status byte and Vdp Regiaters 0 and 1 are
active soc only the active bits are labeled. As you move the cursor arcund on
this screen the Explorer will automatically skip over the “inactive bits.
Also, since, the Vdp Status is a Read Only Regilster you can not edit this
reglater it is here for the binary break down. '

Even though all of the bita are not active in Vdp Registers 2 through 6 you
cap still edit the inactive bits but they will not effect the Table addreas,
This was allowed aince some Application Programs write values that turn ¢n
the inactive bita even though they are ignored by the TMS 9918 vdp
Procesaor.

45

———m————— 3tatus Registers

bgh. grt c¢nd car ovf
Gs ¢ 0 0 0 0 O O 0 00

— — [y - =t - r— T 7 . 1 1 F T 1 i gy il e S

Gpl Status

The Gs display breaks down the Gpl Status byte into its binary
representation. This byte is not an agtual hardware register, like the
Cpu Status and Vdp Status. It is instead controlled and used by the Gpl
interpreter software in console Rom. The actual location of this byte is
at >837C in Scratch Pad Ram. If you change the bits or the hexadecimal
value displayed here, the Explorer will automatically change the value
at >837C and the value on the Explorer's Main screen and visa versa.

The following bits are used by the Gpl interpreter:

Hgh ~ High
when this bit is set it indicates to the Gpl interpreter that a Gpl
Logical Greater Than {unasigned numbers) condition exists,

Grt - Greatsr Than
When this bit is set it indicates to the Gpl interpreter that a Gpl
Arithmetic Greater Than (signed numbera) condition exists.

Cod - Condition bit

This bit is used by the Gpl interpreter for a variety of items. Its main
use is to indicate a True (1) or False (0) result of a teat. Theae tesis
are Gpl instructions that move one of the other bits in this byte Lo the
CND bit. It is this bit that the BRANCH ON SET (>60) and BRANCH ON RE3EY
(>40) instructions test before branching. Also, the Key Scan routine
sets this bit if a key press is detected.

Car - Carry

When this bit is set £t indicates to the Gpl interpreter that the most
significant bit of the word or byte being operated upon has been carrled
out of the word or byte into this bit.

Ovf - Overflow

This bit gets set when a Gpl cperation results in a too large or too
small condition for 2's compliment numbers,

N6

¥Ydp Status

m

i

-— Status Registers ——---.

b nlerr — - W dger ofin g . . —

[X] L —_— [~ -— [- L] - e g

int 5rw cn¢e fifth sprite number
Vs 1 1 ¢ O 0 O O ¢ ¢

The Vs display is the binary break down of the TMS 9918A Vdp Processor's
Status Register. The value that is shown here represents the value
contalned in that register when the the Application Program screen was
LAST displayed. Since this register is a hardware Read Only register you
can not edit the bits or hexadecimal value. It is here to diaplay the
binary break down which includes the following bita:

int - VYertical Retrace Interrupt

When this bit i1s set it indicates that the TMS 9918A has started the
vertical retrace period. Vertical retrace is when the raster scan
reaches the end of the active display area and then moves back to the
Lop of the screen. It is at this time that the Vdp chip generates the
Vdp interrupt for the 9901. Vertical reirace happens 60 times per second
sc we have 60 Vdp interrupts per second on a 60 Hz system (50 per second
on a 50 Hz system). 2

5rw ~ 5 or more sprites on a row ? ;
This bit is seb by the Vdp chip whenever there are 5 or more aprites on
a row and the INT bit 1s set to 0 (not checked during vartiﬁal retrace).
Since sprites are not allowed in Text mode this bit has no meaning when
Text mode i3 active. :

cn¢ - Coincidence -

Thia .bit is set by the Vdp chip whenever two or more sprites have at
least one overlapping pixel. The Vdp chip checka for cverlapping pixels
&3 it generates the pixels on the screen, 3¢ this check occurs 60 times
a second (60Hz). (Note: No sprites in Text mode.)

fifth sprite mumber

Whenever the Srw bit is set, and you are not in Text mode, these 5 bits
contain the number of the rifth sprite on the row. If Srw is not set or
if you are in Text mode these bits have no meaning and usually contain

garbage, Y

47

M

¥dp Write Only RBegistars

—_—— YDP Registers

- bit ext
vOo 0 0 0 0 0 0 0 © 00

16k scn int txt mlt aze mag
vi 1 1 1 0O o0 0 ¢ 0 EQ

vz 0000 0000 00
v3 0000 1110 OE
vi 06000 0001 01
vS5 0000 0110 06
vé 0000 0000 00
vT 1111 010% F5

acreen image 0000
color table 0380
char pattern 0800
aspri attribu 0300
spri pattern 0000
txt/scrn elr

The next 8 Vdp Registers are the Vdp Write Only Registera. This means
that your scoftware can write to these registers but it can not read
them. The firat two, V0 and V1, control the various Vdp modea. The next
five, V2 through V6, control the various table locations in Vdp Ram and
the last one, V7, controls the Text Mode text color and All modes screen
colop.

Bit ~ Bit Map
This binary switch enables and disables Bit Map Mode (1 or 0) when TXT
and MLT in V1 are Off,

Ext - External Vdp

This binary switch enables and dissbles the External Vdp chip
synchronization option of the TMS 9918A. You can enable thias bit but
since there ian't an External Vvdp chip hooked up to synchronize with
your Application Program's screen will g0 out of ayno. Since you are in
control you can play with this bit without burting the Application
Program.

48

¥dp Write Only Registers Continued

vl -

) 16k scn int txt wmit 5Z6 mag

vl 1 1 TEOGOGUE{]

16K - 16K Vdp Ram

When this bit is set the TMS 99184 V¥dp Processor handles the Dynamic Ram
refresh for 4108 (8K) or 4116 (16K) DRam chips, When this bit 1is zerc
the TMS 9918A refreshes the 4027 (4K) DRam chips. The 99/4A contains
5116 DRama, the 4108 and 4027 DRams are not used in our consoles.
IMPORTANT NOTE: If this bit is zero and the SCN (Screen Enable) bit is
also zero the 4116 Vdp Dram chips will not be refreshed properly. This
causes the values in many areas of Vdp memory, including the screen
image, to decay to zero when the Application Program screen is toggled
in (CTRL 3).

scn - 3oreen Enable/Disable

When this binary switch is zero (disable) the Application Program screen
will be blank and only the screen color willl sahow. Many of the
Application Programs blank the screen image while they are building
their screens. To watch an Application Frogram build its screen Just
turn on this bit.

int - ¥dp Interrupt Enable/Disable
When this binary switch is On {1) the Vdp chip will generate a Vdp
Interrupt signal for the 990) whenever the raster scan is at the end of
the active display area (60 times a second for 60 Hz},

txt - Text Mode /
Turning this binary switeh On places the Vdp Processor in Text Mode (40
¢olumns) when the BIT in VO and MLT in V1 are zZero, .

malt - Multi-Color Mode “
Turning thias binary switoh On places the Ydp Processor in Multi-Color
Mode when the BIT in V0 and TXT in ¥1 are zero.

sxe - Sprite Size

This switch selects the Sprite Size for the Vdp chip. When it is On (1)
all sprites are made up of 4 characters (16x16 pixels). When it ia Ofr
all sprites sre made up of 1 character {8x8 pixels).

g - Sprite Magnification
This awitch seleots the 3prite Magnification for the Vdp chip. When it

13 On the =prite pixels are wagnified 2x. When it {s Off the sprite
pPixels are normal size.

49

_-ﬂ..

—.-}-.-.-.-...-_. ———— e

L—.—__—._--——-—.-—-—-—-a -

Ydp WUrite Only Begisters Contimued

vh -

W

ve 0000 0000 OO
v3 0000 1110 OF
vh 0000 -0001 01
v5S 0000 0110 06
vhb 0000,0000 0O
¥7T N11 0101 FS

screen image 0000 !
color table 0380

char patterp 0800

spri attribu 0300

apri pattern 0000
txt/scrn olr

This section of the Explorer's Registers Screen contains information
about Vdp registers v2 through v7. The Explorer automatically calculates
the atart address for each of the different tables that are controlled
by v2 through vé6. If you change the binary or hex valuesz for these
registers the address for that table in the Application Program will
al80 change.

Screen Image Table '
The least significant 4 bitas (===~ 0000) in thia register control the
start location of the Screen Image Table, Thia iz the area of ¥dp Ram
that holds the characters you see on the screen. Thia start address is
squal to the value of the least algnificant § bitas times >0400.

Color Yable ‘

Al)l of the bits in this register control the atart loocation of tha Color
Table, The Color Table is the area of Vdp Ram that containa the
foreground and background colors for each of the active character set
groups. This start address ias equal to the value in thia register times
20040. Note: In Bit Map mode this register controls the ENDING location
of the Color Table.

The least significant 3 bits (-w-- -000) in this register control the
starting location of the Character Pattern Table. This area of Vdp Ram
holds the character definitions (CALL CHAR) for each of the sctive
charactera. The start addreas is eéqual to the value of these 3 bita
times >0800. Note: Basic and Extended Basic set this table at 0000 -
but the actual character definitions atart at >03FP0. This is really the
the start of the definition of character mmber 126 not 30 - ag Basic
and Extended Baajic Add 96 (>60) to the value of each character placed on
the screen to compensate for this offset in the table. This ia how the
Basic Bias came to be and it was done by TI to conserve space in Vdp
Ram. Note: In Bit Map mode this register controls the ENDING loocation of
the Character Pattern Table.

Sprite Attribute Table

The least significant 7 bits (~000 0000) in this register control the
atarting location of the Sprite Attribute Table. This Table holds the
Character number, Color, Dot Row and Dot Column position of each active
sprite. The start address ims equal to the value of the least significant
T bits times >0080C

B ——————————————————————

20

Ydp Write Only Registers Continued

V2 mcce cmee me cemmee ———ee ——

¥3 mmem mmem ee emmen ceee- ———-

Vi cmwe meaa S —— —
V5 =mee e -
vb 0000 0000 00 spri pattern 0000
v7 1111 0101 F5 txt/scrn elr

vb - Sprite Pattern Table

The least afgnificant 3 bits (~-== ~000) in this register control the
atarting location of the Sprite Pattern Tablae. Note: In Bit Map mode
thiz register controls the ENDING location of the Sprite Pattern Table.
This table bholds the character definitions for the characters that make
up the sprites. In Basic and Extended Bazic this table also starts at
zero. So, this table and the Character Pattern Tables are identical.
What this means is that a sprite that is made up of charaoter number 65
. is actually mpade up of an A. Sc¢ if you redefine the A (CALL CHAR(65,...)
the sprite will also change. In Assembly or Forth you can place this
table in a different location so that the sprite definitionz and the
character definitions can be independent of each other. Since this table
overlaps the Character Pattern Table it is alao asubject to the Basic
Bias. So 1f you execute a CALL SPRITE(#1,65...) you will find >A1 (161)
in the Sprite Attribute Table for sprite #1 not >41 (65).

In this Table and tbe Character Pattern Table there are 8 bytes per
character. So to find the start address for a given uhai'j',act.er number
Just multiply the character number times 8 and add the tables starting
address to it. If you are in the Basic or Extended Bnain; environment
don't forget to add the Basic Bias (>60 or 96) to the character value

-

before you multiply it times 8. -

f

Examples: Basic or Extended Basic MA"

65 + 96 = 161 161 # 8 = 1288

1288 = >0508 >0508 + >0000 = 0508 char pattern for WA®
Editor Assembler or Mini Mem "A%

6 & 8§ = 520
520 = Y0208 >)208 + >0800 = >0A08 char pattern for ™A™

¥] - Text and Screen Color

This register sets the color of the text when Text Mode is active and
the color of the screen in ALL Modez. In this register the moag
significant nibble (0000 ---~ or >0-) sets the text color. The least
significant nibble {(-=== 0000 or >-0)} sets the screen color. When you
execute CALL SCREEN(8) the Basica subtract one from 8 and write a 7 fer
the screen color. For some resson TI wanted the colors to start at 1
inatead of O in the Basjca 3¢ ALL the c¢olor codes are offzet by -1
before they are written to the Color Table or this register.

51

As we mentioned earlier the Explorer WILL execute the Interrupt Routine along
with the noresl programs flow if interrupts enabled. The Explorer executea the
interrupt routine whenever the Interrupt Mask does not equal zero s0 this is
a simulated interrupt and not an aotual Hardware interrupt. The interrupt
routine in the 99/4A performs the following functions (in this order):

First a LIMI 0 is executed to disable any other interrupts - since the
interrupts perform a context switch the old LIMI value along with the
status is in R15 of the Interrupt Workapace (83C0). Kote: The Explorer
automatically sets the Interrupt mask to zero when RTWP 1s executed.

Next the Workspace is changed to the GPL Workspace (B3EQ) and R12 is
cleared. |

The Caasette interrupt timer flag in R14 is checked to see if it is Oon.
If 1t is the interrupt rcutine hops down to the Cassette Timing routine
at >1404 to continue which does NOT service the rest of the iteas.

If the Cassette interrupt flag was not set Bit 2 of the 9901 is checked
for a Vdp interrupt. If it waa a Vdp interrupt instead of an External
interrupt (generated by a peripheral device) the routine continues at
YDP INTERRUPT.

EXTERNAL INTERRDPY -~ If it was an external interrupt (peripheral)} the
routine turns on the cards one at a time starting at Cru Base 1000 to
check for interrupt routines. If the card ocontains an interrupt routine
(like the RS232 card) it 1s executed. Then the card 1s turned off and
the next card is checked until the Cru Base = 2000 {end of peripheral
devicesa), Then it hops down to END and leaves the interrupt routine. So,
an External interrupt does NOT service the rest of the items.

YDP INTERRUPT - First bit 2 of the 9901 is reset (turned off), then 83C2
1s moved into R1 and the most significant bit is checked. If its On then
the routine hops down to VDP STATUS and skips Auto-Motion, Auto-Sound
and the QUIT key.

AUTO-SPRITE MOTION - The Auto-Sprite Motion bit in R1 is checked and if
it is On this routine is akipped. Otherwise the interrupt routine moves
837A (highest sprite number ia auto motion) into R12. If it is zero the
rest of the routine is skipped cotherwise the routine moves the sprites
to their new location according to the Sprite Motion (0780) and Sprite
Attribute Tables in Vdp Ram.

AUTO-SOQUND PROCESSING -~ The Auto-Sound Frocessing bit in R! is checked
and if it 1s On this routipe is skipped. Otherwise the interrupt routine
checks the Most significant byte in B3CE. If its zeroc the rest of the
routine is skipped if its not the location of the sound table 1s checked

(Vdp Ram or Grom) and the next byte of the table is moved toc the sound
chip and 83CE ia decremented.

%

b2

i

THE INTERRUPT ROUTIEE Contimued

QUIT KEY ~ The QUIT Key bit in R1 is checked and if it is On this
routine is skipped. Otherwise the FCTN and = Keys are scanned, If they
are being pressed down it performs & software reset (BLWP &>0000 - Power

Up routine)

YDP 3STATUS - If the mosi significant bit in 83C2 was set the iaterrupt
routine would have hopped down to here to continue execution. At this
point the Vdp Status byte im copied to 837B

The Workspace pointer is set to 83C0 and the Screen Time Out Counter is
then incremented by TWO, Next it is checked, if it is NOT zero the rest
of this routine 1s skipped. Otherwise this routine, which is also
pocinted to by the Level 2 interrupt vector, is executed. This routine
uses the copy of Vdp Register 1 which is stored at 83D4 (R10 of the
Interrupt Worksapace) to blank the screen by masking out the SCN bit in

Vdp Reglister 1.

The Workspace pointer is sset back to 83E0 and the Interrupt Timer at
8379 18 incremented by the value in the most significant byte of R14.

The User Interrupt Vector (ISR Hook in 83Ch) is woved into R'2 and if
its not zero the User Interrupt routine is BRANCH and LINKed to. (R1t1 of

83E0 contains the return address)}. After it is unnplat.ag it sets the
workspace back to 83B0 and returns with a RT (B %R11) inatriction,

END - R8 of the Gpl Workspace (B3E0) is cleared, the workgpace pointer
is set to 83C0O and a RTNP is executed.

.q_

E.

53

EXPLORATIONS

In this section of the manual we will take you through a few Explorations on
the operation of the 99/4A. Keep in mind that since the Explorer is a machine
language interpreter the Application Programs run slower. The Explorer
operates the computer at about 1/300 its original speed, with the Application
Program's screen displayed and interrupts disabled (CTRL §). With interrupts
shabled the speed can decrease to about 1/1000 the original speed. With this
in mind best case tells us that sopething that normally takes 1 second will
now require approx 300 seconds to complete. Thia is very evident when you are
executing the Basic languages because they are now going through three levels
of interpretation. The Explorer interprets the machine language which is the
Gpl interpreter interpreting the Gpl object code which contains the Basic
interpreter which is interpreting the Basic commands and/or program, And this
is why we recommend that you use the Explorer on the Basics with direct CAlLs
and samall programs. The heart of the Explorer, the machine language
interpreter, has been optimized for speed and efficiency but whenever
something is executed interpretatively it alows dowm. However, we felt that
the wealth of information the Explorer returns because of its interpreter was
worth it. So lets get started, but please follow the Explorations in order.

First we will look up a few values in your computers memory. TI has
released a number of different version of the 4A so we want to be sure
that you use the right veluea. Most of the conacles have the same Rom
but the Grom has under gone some minor changes. Only the real early i
conscles have a slightly different Rom.

1. Load the Explorer into the Extended Basic environmant.

2. Set the WS field under Cpu to 00D0O. With the WS aet here the Workspace
registers contain the data that is in Cpu Ronm memory at >0000. We had

you use the WS instead of the Memory Window because it is easier to see
the Vectora in word form.

3. The registers currently contain the following information:

RO = The Workspace Pointer (WS) for the Power Up Routine

R1 = The Program Counter (PC) for the Power Up Routine

R2 = The Workapace Pointer (WS) for the Level 1 Interrupt Routine

R3 = The Program Counter (PC) for the Level 1 Interrupt Routine

RY = The WS for a routine that blanks the screen

R5 = The PC for the above routine

R6 = Data - Conscle clock apeed and "AA" for checking validation bytes
BT = The opcode for the Branch ipstruction (start of Assembly key scan)
R8 = The Cpu BP address to use for halting the Explorer on a Key Scan
R9 = Data - zero and eight

For the first Exploration just remember the value in RS (02B2). A little
latter on we will uae the values in RO & R1.

r

'M

54

N

EEY SCAN AMD THE EXIPLORER

1.

2.

3.

4.

9.

6.

7.

You already have one value that we peed but we will need to SEARCH for
cne more. The value that was in R8 on the previous page is a good value
to use for the Cpu Break Point for any Key Scan. You see, there iz a
slight difference between the entry point for the Key Scan that an
Assembly Language program uses and the entry that the Gpl Interpreter
uses. But, they both pass through the R8 address., Note: Most consoles
contain >02B2 as the address in RE when the WS is set at >0000.

Now lets find the second value that 1= handy to know for Key Secan
operations. This value will be the PC address when a key press has been
detected and the proper Cru Bits from the keyboard have been converted
intce their key code Hex value. But the Hex value has NOT been moved out
to >8375 in Scratch Pad Ram yet, it is still in RO of the Workspace. By
setting your Break Point here you oan change the value in RO and fool
the Application Program into thinking that a different key wasa presaed,
This i3 handy if you want to input CTRL 2 through CTRL 5, which are used

by the Expleorer for special controls,

Set your Memory Polnter to c----s. Any address will do since we are
going to activate the Search Function.

Press FCTN 5 to activate the Search Function and input 0000 as the ST
address and 1FFF as the FN addreas.

3

»*

Make sure your Memory Window display is in Hex mode (FCTN &)
Place your cursor in the Search String input area and trpe‘in 70 20.

Preass the left arrow key once to place the cursor on top %f the 0 in 20
and then press Enter, :

When the Explorer finds this value REMEMBER the Memory Pointer address.
For most consolez it should be >ON3E.

Press FCTN 5 to turn off the Search Function and Preas FCTN 7 to bring
up the Number Converter.

8. Input >043E (or your Memory Pointers addreas) into the firat Hex input

field and »0006 into the second Hex input field.

9. If the Operation Indicator is not a + then ﬁraaa FCTN 9 to place the
.

10.

cursor on the + and press Enter.

The value after the = in the Hex result area is the Cpu Break Point
address we were looking for. 044} for most conscleas.
Now write these two values (addresses) down for future reference.

0287 094

Key Scan BP (02B2) Key Press Detected {QO4il)

55

XBY SCAR AND THE EXPLORER Continued

-

Now that you have these two values (addresses} you can eaaily use them
as Break Points in your Explorations. But you should be aware that the
Application Program i1s not always looking for a key preas when the >02B2
1s reached. Sometimes the Application Program is just resetting the
keyboard (990%) to a known state. You oan count on the second address
(>0444) as always indicating that a key press has been accepted. If you
want to use CTRL 2 - CTRL 5 in executing your Applicaticn Program simply
setl the Cpu Break Point to the second address. When the Break Point- is
reached you can replace the key code in the most significant byte of RO
with the appropriate key code from the following table:

CTRL 2 = »B2 CTRL 3 = >B3

CTRL 4 = >Bh CTRL 5 = >B5

S50 now lets see how those addresses work.

Set your WS back to 83ED, make sure your PC is at 006A, set the Cpu BP
at 02B2 (or your value) and presa CTRL 2 and CTEL 3.

The Explorer will now start to return to the Comsand HMode of Extended
Basic. It will reach the Break Point before the screen scrolla but this
is just Extended Baaic reselting the keyboard. Just press any key to
release the Bresk Point condition and press CTRL 2 and then CTRL 3 to
gtart it back up.

. When the Break Point is reached again Extended Basic is in Comsand mode

and is looking for a key press. Press any key to release the break point
condition,

Set your Memory Pointer to g----d with FCTN 1 so you can watch the key
scan grab the key code ocut of of Grom 0.

Set the Cpu BP at >0844 (or your value), press and hold down CTRL 2 and
then press and hold the "L" key,

Release the CTRL and 2 keys at the same time but hold down the "L*®
until the Break Point is reached. ° "LT key

The Explorer will then execute the key scan snd Break when the key is
detected and decoded, watch R4 when the key is detected. The moat

significant byte in RO is the key code for "L® and should be >
it to >4D, the "M@, ® 4C. Change

Now press CTRL 3 and then preas CTRL 2 to start u
\ p the Explorer.
Extended Basic will now place an "M" on the screen instead of the "LY,

NOTE: If you use the CTRL 1 - Single Execution -~ through tbe key acan
the CTRL key may be detected, so if you were holding down the “L" key it
would be decoded as CTRL L instead. The code that actually reads the
keyboard cru bits is STCR R4,8 INV Rd (SEARCH for opcodes 36 O 05 A4 -
1o conscle Rom for this Break Point, it should bs at >0346.)

M

56

THE POWER OUF ROUTINE

For this Exploration it doesn't matter what environment the Explorer 1is
loaded into. Alao, if the Explorer is already loaded, it doesn't matter where
its at in the Application Program because we are golng to restart the

computer,

10.

The Power Up routine can be executed at anytime by simply following
ateps 1 & 2 and starting up the Explorer. What we are going to do though
is set a few Break Points along the way. Remember the R0 and R1 values
we obtained when the WS was at 0000, well its now time to use them.

Set the WS at 83E0 (RO value) 1if it is not already there.
Set the PC at 0024 (R1 value).

Set the Grom BF at 00EB

Move the cursor down to the RO fleld and press and hold the zero key to
clear out the WS. (This is not necessary for proper execution of the
Power Up routine but we wanted you to see the first few instructions

work)

. Set the Memory Window to g----d and set the Instruction Counter to zero.

Set the disaasembly to a 3 line display (FCTN 3) and make sure the
interrupts are disabled (CTRL 4).

Now press CTRL 1 a few times and watch the Workspace as the inmstructions
start to set it up. ~

. When the PC reaches 0060 the Gpl interpreter is about to aset the Grom

address to the value in Ré (0020). These are the zetl (rom addreas
{instructions we talked about in the Grom Controls section of the manual.

Preas CTRL 1 and watch the Grom address and Memory Window a3 each byte
of the address is passed to the Grom Write Address port (9800 + 402 =

9C02).

After the address is set it will clear the Gpl Status CND bit (FC=0064)
and then Set the Inoterrupt Mask to 2 and then to 0, If you had
interrupts enabled (CTRL &) the Explorer would go out and execute the
interrupt routine right after the IM was set to 2.

‘-’

The Grom address of 0020 is the start of the Gpl Power Up routine 80 now
lets turn it on, CTRL 2 and then CTRL 3 and let it reach our Bragk

Point.

5T

m

THE POWER UP ROUTINE Continued

d
L

11.

12.

13.

Iui

15.

16.

17.

When the Break Point is reached (approx 9 seconds) just press any key to
release the Break Point condition. This Break Point was set to allow you
to turn the screen on. Four times previous to this break point the powyer
up routine reset Vdp register 1 with the SCN bit off but now it will
leave it where we set it.

You can turn the screen on for Graphics mode {32 column) by either
writing E0 to vi or by pressing FCTN 8 and moving the curscr down to the

SCN bit in v1 and turning it on. Then press FCTR B again to get back to
the Main screen.

Set the Grom BP to 6000, set the Vdp BP to 4300 and start up the
Explorer again (CTRL 2 CTRL 3). The Power Up routine will now start to

clear out the first 43X of Vdp Ram. Our Vdp BPreak Pcint will be reached
in approx 20 seconds.

When this break point is reached clear the break point conditicn by

pressing any key and set the Vdp BP to 5000. Next Set your Menmory
Pointer to v0000s and the diaplay to ASCII (FCTN =) with Basic Bias Off.

Press FCTN 9 to put your cursor in the Memory Window (Editor) at 0000
and type in "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ®, Next press CTRL 3 to
see the Application Program's screen. You may or may not be able to
something on the screen at this time depending on what 1a in Vdp Ram
where the tables are currently set at. We had you do this so you could
watch the Power Up routine load the Title screen character set. The

Power Up routine does not use th 11t in subroutines to do this so the
Load Characters H 5 option has fect.

The Power Up routine still has to clear the rest of the first 4K of Vdp
Ram 80 it will be approx 98 seconds before the charaoter set starts to
load. The Vdp BP of 5000 will Break the Explorer before this happens ao
you can go take a break. The loop counter in R8, which ashould be at
OD01, counts down the number of bytes yet to be cleared. You can bypasas
thia clearing operation by pettin R8 to 0001 but the Color Bars on the
title screen may contain g age because thelr character definitiona
haven't been cleared out. (‘reset R8 for this Exploration)

Wher the Vdp BP of 5000 is reached clear the Break point condition and
set the Vdp BP to FFFF (turn it off). The Power Up routine still has a
couple of items to do before it loads the charscter aset. FPirat it will
load the color table and then it will scan the keyboard a few times to
set it to a known state, This takes approx 5 seconds. Then it will load
the character set. If you want to wetch thia happen on the Main Screen
set the Memory Pointer to ¥v-=---d in Hex display mode and the Explorer
will dynamically track the bytes as they are written to Vdp Ram.

58

i .
THE POWER OF ROUTINE Contioued

18,

19.

20.

21.

. 22,

23.

24,

25.

26.

Press CTRL 2 CTRL 3 and watch the Title screen character set load. While
it is loading vou can press CTRL 3 to toggle between the Main Soreen and
the Application Program's screen, After the character set is loaded the
Power Up routine will clear the screen and start to build the Title
screen. The Grom BF of 6000 that we set earlier will Break the Explorer

when the Title acreen iz fully bullt.

When the Explorer reaches the Grom BP clear the break point condition
and set the Grom BP to FFFF alac set the Cpu BP to 02B2 (or yqur key

scan break point).

Set the Memory Pointer to v0128s in ASCII display mode. Press FCTN 9,
type in your name and the press CTRL 3 to see YOUR new Title screen. Now
lets play with the Vdp registers a little. Press CTRL 3 to bring up the

Mein acreen again,

Press FCTN 8 to bring up the Registers Screen. Move the cursor down to
the BIT switch in v0 and enter a { (turn it On). Now press FCTN 8 and
then CTRL 3 to see the Title acreen in Bit Map mode.

Press CTRL 3 to bring up the Maln Screen, press FCTN 8 and turn Off the
BIT =witch. Move the cursor to the TYXT switch in v1 and turn it on.

Press FCTN 8 and then CTRL 3 to see the Title screen in Text Mode.
7

Press CTRL 3 and then FCTN 8, turn Off the TXT switch and turn ON the
MLT switch. Press FCTN 8 and CTRL 3 to see the Titlll'.-.- screen in

Multi-Color moda.

Press CTRL 3 and then FCTN 8§, Leave the MLT awitoh ON fmd move the
cursor back to the BIT switch and turn it On. That's right Bit Map
Multi-Color mode -~ the one that TI forgot to tell us about! Now press
FCTN 8 and CTRL 3 to see the Title screen in the new mode. One cther new
mode iz Bit Map Text mode - which is Bit Map mode with the screen trying
to display 40 columna. We haven't actually used these new modes for
anything but they wmight be fun to play around with to mee what the

results would be,

When you are done playing with the varioua modes set the BIT, TIT and
MLT switches Off to set the Title acreen back to ita normal Graphics (32
column) mode. If you know the values to place in v0 and v1 you capn also

set these modes from the Explorer's Main screen by editing these fieldai

Take a look at the Inatructicon counter and preas FCTN 7 to see it in
Decimal, Ours says 105,272 Machine Language Inszstructions have beep
executed so farl And that does not include and interrupt routine
execution since we disabled it (CTRL 4). Press FCTN 7 again to bring up

the Maln Screen.

59

A g . .

——romamwr,

e —

THE PONER UP ROUTINE Continued

-

27 .

28.

29,

30.

31.

32.

Press CTRL 2 to Start up the Explorer again but leave 1t on the Main
Screen. In a few seconds your Disk Controller light will come on. What
has happened is the Power Up routine has started its peripheral card
dcan and it is looking for cards that contain Power Up Routines. The
Disk Controller contains a Power Up routine that sets up ¥dp Ram to a
default of CALL FILES(3). IMPORTANT - If you are using a Myarc RAM DISK
card the Explorer will lock up at this point because the card does a 32K
Bank Switch when its internal Power Up routine atarts.

The TI DSR and our DSR (corcomp card) clear out ¥dp Ram from 37D8 to
3FFF and then place some values at 37D8 to aignify thet a Disk
Controller is in the system and that space i3 reserved for 3 disk files.
The Myarc Disk Controller DSR clears out its own DSR Ram at 5000 to STFF
and then writes a few bytes to Vdp Ram 37D8.

After this clearing is finished the TI and Myarc cards continuve with a
normal Power Up. Our DSR stays in control and builds the 9900 Disk
Controller Title acreen and this is where the Power Up routines start to
differ. At this point the TI and Myarc cards release control back to the
Gpl interpreter, our DSR stays in control until you select Basic or a
sodule from the menu or press the space bar. This probably wasn't the
smartest thing to do since it doean't allow a Power Up routine in the
module to be executed prior making a selection. Only a few modules have
Power Up routines in them like the TEII and if you preas the space bar

twice to bring up the normal TI menu instead of the 9900 DC menu the
power up routines are executed.

At this point the TI and Myarc cards have released control back to the
Gpl interpreter to continue on with a little house keeping. Our DSH is

8t1l] in control and, like the other cards, it will soon be looking for
a8 key press,

®When the Explorer reaches the Cpu Break Point of O2B2 that we aset
earlier clear the Break Point condition. If you have our DSR (corcomp
card) set the Cpu BP to FFFF, start up the Explorer, CTRL 2 CTRL 3 and
presa the space bar, When the screen starts to clear preaa CTRL 2 CTRL 3
and set the Cpu BF back to the key scan BP, 02B2. Then start the
Explorer back up CTRL 2 CTRL 3. When the Cpu BP 18 reached sgain all of

the Power Up routines will be in the same place no matter whioh Disk
Controller card you have.

Clear the Break Point condition, set the Cpu BP to FFFF and start up the
Explorer, CTRL 2 CTRL 3. At this time the Power Up routine is in a loop
wailting for a Key press before it continues on. Go ahead and press a
key.

60

£
]]

THE POMER UF ROUTIRE Continued

33. After the key is presased the console Power Up routine will scan the
module that is plugged into the Grom port for a module Power Up routine.
If it has one (most don't) it is executed and if it returns, instead of
taking control, the conscle Power Up routine will build the menuv {with
the SCN bit turned off again) and then turn on the screen and wait for

you to make a selection.

34. For now select 1 - TI Basic by pressing and holding the 1 key for a
second or 20 (the screen will start to clear). The Power Up routine is
still in control and it will now clear the screen. Normelly at this time
there is a BEEP sound generated but we have the interrupts turned off =o
this will not happen. But, the BEEP routine places a value of 0100 in
83CE and it loops and waits for this to be changed to zero by the
interrupt routine before it continues. Toggle to the Main Screen (CTHL
3) and look at R3 if it oontains 83CE then your are in this loop. If it
doesn't contaln B3CE then you are not there yet but you will soon be.

35. When R3 contains 83CE you can get out of the loop by simply pressing
CTRL 5 ~ this turns off the sound generator and zeros out 83CE. You
¢ould also atop the Explorer, set the Memory Pointer to c83CE- and zero
it out yourself but, CTRL 5 1s much simpler because you can leave the
Explorer running. NOTE: IF you make a selection from the 9900 Disk
Controller menu (our DSR), other that the Space Bar, it will not go
through this loop 30 you do not have to worry about cledring out the
sound indicator at 83CE.

36. The Power Up routine will now clear out Vdp Ram from 1000 to the disk
buffer space at 37D7. Once again R8 is the counter =20 yow can bypass
this lengthy process by placing 0001 in it. Why 0001 apd not 0000,
because the instruction flow decrements R8 and then jumps if its not
zero. If it decrements 0000 you end up with FFFF and that's not zZero so
it will really mess things up. This is a GOOD rule to remember any time
you change loop counters - always set them to at least 0001.

37. Once Ydp Ram is cleared or the counter reaches 0000 the Power Up routine
clears parts of Scratch Ram, sets up the color table and releases
control to Baale. You'll notice the Grom addressz to be in the 2000
through STFF range (Groms 1 & 2) when this occurs. So that ends the
Power Up routine and begins the next Exploration of TI Basic.

61

_— O e i e e g g e

There are 3 different ways to get into the Basic environpent. The firat and
easiest 1s to load the Explorer there through CALL LOAD(™DSK?1.EXP" or MEXP)
with the Editor Assembler or Mini Memory modules plugged in. The second way
is to go through the Power Up routine as we did in the previous Exploration.
And the third way is to set the Explorer up to directly execute Basic. (see
Direct Execution of Other Modyles). If you have just completed the previous
Exploration then you are are already part way into the Basic environment. Ir,

on the other hand, you are about to start your Explorations again then load
the Explorer into the Basic environment.

Start up the Explorer, CTRL 2 CTRL 3, and let it run until the screen
scrolls and the cursor reappears. You are now in Basic's Copmand/Edit
mode and it is waiting for you to tyre something in. When you type

remenber that everything is being executed interpretatively so things
happen slower.

Exscouting 4 Basic CALL

1. After the oursor has reappeared press CTHEL 2 and CTRL 3 to atop the
Explorer and bring up its Main Screen. Now lets take a look at the
forwat for a BASIC Subprogram Header (I-Basic is different).

2. Set the Memory Pointer toc g----s, Preas FCTN § to activate the Search
Function and input 2000 for ST and STFF for FN. 2000 - S5TFF is the Grom
address range for the Basic Interpreter. Put your cursor in the Search
String input fleld with the diaplay in ASCII and Basic Bias Orf. Type in

COLOR, preas the left arrow key once to put the cursor on top of the R
and press Enter. |

1

3. When the cursor reappeara and COLOR 1s found press FCTN 5 to exit tbe
Search Function. Then press FCTN 9 to put the cursor in the Memory
Window. With the cursor aitting in the home position (first byte) of the
Memory Window press the left arrow key 5 times. This will place the
beginning of the Subprogram Header in the home position of the Memory
Window. Now press FCTN = to display it in Hex, and here's what you have:

first gurd = hp38 pointer to next subprograx header
seocond word e 5713 entry point for this sudbprogram
next byte = 05 length of thia subprogram's name

following bytes N3BRFACHF52 COLOR - thia subprogram's name

We are most interested in the second word or the Entry Point for the
subprogram. This will allow us to set a Grom BP to halt the Explorer
when Bssic first starts to execute the subprogram. Previous to Basic

arriving at this location it performs a few overhead type items which we
will discuss in a moment.

62

i

EXECUTING A BASIC CALL Continued

N N N EEE B B B BN SN S EEE B S S e—

g e - e e

u.

Now lets Search for SCREEN, the one we are going to execute. Make sure
the Memory Pointer is set to Grom memory. Press FCTN 5 to activate the
Search Function and reset ST back to 2000, Put your cursor in the Search
String input field with the display in ASCII &nd Basic Biaa Off. Type in
SCREEN, move the cursor on top of the N, and press Enter.

When SCREEN is found press FCTN 5 to exit the Search Function. Then
press FCTN 9 to put t{he cursor in the Memory Window. With the cursor
sitting in the home position press the left arrow key 5 times and set
the display to Hex, now here's what you have:

first word = 0000 no more subprograr headers
second word = 37TBF entry point for this subprogram
next byte = 06 length of this subprogramt's name

following bytes 63435245454E SCREEN - this subprogram's name

. Preas FCTN 9 to get your cursor out of the Memory Window and move up to

the Grom BP field and type in the Entry Point address (37BF) for SCREEN,

Set your Memory Pointer to v--==d or press FCTK 1 to bring up that
Memory Window. Then press CTIRL 2 and CTRL 3 to astart up the Explorer.

SLOWLY type in CALL SCREEN(7). By slowly we mean press down the letter
key and hold it until the cursor disappears. When the curﬁnr reappears
press down the next letter. When you get to the second L in CALL wait
for a second after the cursor reappears before yawpra}sa the L key
again. If you press it too soon Basic will try to go into Auto-~Repeat
node but before it repeats the key it has a LARGE delay loop. If the

" ecursor doean't disappear within a second or so after you presas the

10.

second L just let up on the L key for a bit to get out ‘of this Auto
Repeat delay loop and then press it down again,

You may be wondering why the curscr doesn't blink. This is because the
interrupts are turned Off. The Interrupt routine controls the counter
that a lot of Application Programs use to blink the curscr and with the

interrupts Off this counter never changes.

After you have the complete CALL SCREEN(7) typed in press CTRL 2 CTRL 3
and set the Cpu Break Point to the Key Detected Break Point (04i4%) then
press CTRL 2 and CTRL 3. Next press and hold Enter until the cursor
disappears and the Explorer Breaks. Clear the Break Point condition and

s
aet the Cpu BP to the Key Scan Break Point (02B2) and zero out the

Instruction Counter field. Press CTRL 2 CTRL 3 to start it up again. Now
here's where that overhead starts that we talked about. ’

63

El T W TTR TR |

M

EXIECUTING A BASIC CALL Continued

-

11. Basic will now go through its CRUNCH routipe. This routine parses the

12,

13.

1.

15.

16‘

line you Juat typed in a word at a time and pPlaces the word in the
CRUNCE buffer at 0320 ie Vdp Ram. So first it will Place CALL in the
buffer and then it will scan through the reserved word list in {iron
until jt finds it. It then takes the token code for CALL (9D) and places
it in the CRUNCH buffer where the C is.

After it haz crunched CALL it will set up the Crunch buffer with the
codes for an unquoted string of x characters (C8 xx) and move the word
SCREEN out there. As each character of SCREEN is moved the x char value
is updated. Then it will place the token for "(® (B7) and then the -
Ltokens for another unquoted string of 1 character (C8 01) followed by
the 7 and finally the ™)™ (B6). By toggling your screen {(CTRL 3) back
and forth you can look in the Dynamic Vdp Memory Window and watch this
2ll happen. Also since you are in control you can atop the Explorer at
any Lime and examine different areas of memory and then start it back up
again. You may want to change your Memory Window to Dynamio Grom or Hex
for awhile. Note: The characters on the Application Program acreen have
the Basic Bias added to them but the items in the Crunch buffer do not.

When it bas completed its orunching Basic will scroll the screen up one
line and then begin execution of the CALL routine. CALL will in turn
scan the peripheral DSRs and then Grom for SCREEN. Once SCREEN is found
and its start address (entry point) is obtained it will save the return
address, set up the start address and the Explorer will Break.

At this point release the Break Condition. You can now single atep
through the SCREEN subprogram or just turn on the Explorer and let it

&0. The SCREEN subprogram is approx 1,685 machine language instructions
long.

After the SCREEN subprogram is complete Basic will return and execute
the following housekeeping routines. Reload the character sets - reset
the screen color back to Cyan - reload the color table - reset Vdp
registers 2, 3 & 4 and then reset the keyboard, the Expiorer will Bresk
at this point but just start it back up again.

After it has performed its housekeeping it will scroll the screen up one
line and bring out the cursor. When the cursor reappears you are back
where we started in Command/Edit mode and the Explorer will Break. Clear
the Break Point condition and press FCTH 7. That's right! 71,265
Instructions have been executed to perform a CALL SCREER (without a
variable cor interrupts) in Command mode.

You can use thia Expinratinn for any Basic CALL. After seseing this it
really makes one appreciete what goes on behind the acenes |

64

£
]]

EXIECUTING AN EXTENDED BASIC CALL

The Explorer that operates in the Extended Basic environment is slightly
different in two waysa. First it has its own speclal loader for Extended Basic
and second when it is loaded it resides in a different aerea of High memory
Expansion. This version leavea 6K of Extended Basic's program space in High
Memory free for your prograss. It is for these two reasons that you can not
use the Extended Basic verslon with the Editor Assembler, Mini Memory or
other Load and Run type Loaders. Also, since Extended Basic tries to load a
file off of DSK1 named LOAD we do not recommend that you select XB from the
menu {Power Op routine}) unless you want to go through this lengthy process.

Firat load the Explorer into the Extended Basic environment Command/Edit
mode with CALL INIT :: CALL LOCAD(*DSK1.XBEXP"), or MIBEXP for the Myarc
card. Start up the Explorer, CTRL 2 CTRL 3, and let it run until the

curaor reappears,

Executing AN Extanded Basic CALL

1. When the cursor reappears stop Explorer and bring up its Main Screen.
Now lets take & look at the format for an EXTENDED BASIC subprogram
header which is different than a Baslc or any other modules subprogram
headera. Set the Memory Window for Grom (g--=--=- } and Search for SCREEN
in the module space {ST=6000 FN=FFFF) y -

2. Press FCTN 5 to leave the Search function and put the qursor in the
Memory Window {FCTN 9) and press the left arrow 3 times tqg bring in the
start of an Extended Basic subprogram header. Here's Hha_t. we have in

Hex diaplay for Version 110: -
A
firat word = AO88 pointer to next subprogram header
next byte = 06 | length of this subprogram's name
following bytes = 53435245454E SCREEN - this subprogram'’s name
next word = AC6H antry point for this subprogram

(version 100 = ACSD)

A3 you can see the entry point for an XB subprogram header FOLLOWS the
name whereas in the other module's subprogram headers it precedes the
name length byte. This was done to keep the Extended Basic CALLs fron
being executed in Basic which has a different Vdp memory map (no

aprites).

.

3. Now that we have the Entry Point for CALL SCREEN aset the Grom BP to this
value (AC66 - V110 or ACSD - V100), set the Memory Window to v---~-d and
start up the Explorer with the Application Program screen displayed,

CTRL 2 CTEL 3.

65

- W Ed "M e o - -

e ey A B e -

m

EXECUTING AN EXTENDED BASIC CALL Continued

9.

Slowly type io CALL SCREEN(7). After you have the complete CALL typed
in atop the Explorer and bring up the Main screen. Set the Cpu BP to the
Key Detected Break Point {Q444) and start the Explorer back up.

Press and hold the Enter key until the Break Point ia reached. Then set
~~2 Cpu BP to the Key Scan address (02B2). Next zero out the Instruction
zznter and start up the Explorer with the AP soreen displaved.

»ivenced Basie will now parse and crunch the CALL statement. It will
&.50 move it out to the Edit Recall Buffer in Vdp Ram at >08C0. You can

- use CTRL 3 to toggle between the screens and watch this happen. The

1.

1e.

3.

1"'.

crunch buffer (>0820) characters DO NOT have the Basic Bias (>60) added
to them, but the characters on the screen (30000 - 202FF) and in the
Edit Recall buffer {(>08C0) do.

“«aen 1t has completed its moving, parsing and orunching Extendad Basic
will seroll the screen up one line and begin execution of the CALL
routine. CALL will first scan Extended Basic's Grom for SCREEN. When you
are in Command/Edit mode it will scan the peripheral DSRs and the Grom
Library if its not found in Extended Basic's Grom. Once SCREEN is found
and its start addreas (entry point) is obtained it will set up the Grom
start address and the Explorer will Break.

At this point you can single step through the SCREEN subprogram or just
turn on the Explorer and let it go. The Extended Basic SCREEN subprogras
1s approx 1,126 machine language instructions long.

After the SCREEN subprogram is complete Extended Basic will Return and
execute the following housekeeping routines along with resetting asome
pPointers: Reload the character sets - Reset the screen color back to
Cyan {v7) - Reload the color table - Zerc out the sprite motion table -
Clear out the sprite attribute table - Reset Vdp regiaters 1 through 6
and then reset the keyboard, the Explorer will Break at this point but
Just atart it back up again.

After it has performed ita housekeeping it will scroll the screen up one
line and bring out the oursor. When the cursor reappears you are back
where we started in Comsand/Edit mode and the Explorer will Break. Clear
the Break Point condition and press FCTN 7. This time it was
only 32,651 machine language instruotions to complete the CALL SCREEN
(without a variable or interrupts). How come only half as many as Basic
when Extended Basio has more housekeeping to do? (Hint - watch how
Extended Basic acrolls the screen)

66

L
i

EXECUTING OTHER ASSEMBLY LANGUAGE PROGRAMS EXECUTING OTHER ASSEMBLY LANGUAGE FROGRAMS Continued

Through the Explorer you can run other Assembly Language programs. This gives
you a very powerful and simple to use debugging tool. It can also be used as ;
a learning tool since you can see the immedlate results of each and every :
inatruction as they are executed. So, if the instruction says SRL k8,8 or XOP
*R0,2 you can see exactly what happens to the Registers, PC and WS right
after you press CTRL 1.

For this example we will uses the DEBUG program that comes with the
Editor Assembler. This file is less than 6K in aize 30 you do not need
to use the PREASSEM file first. NOTE: If you are using the Mini Memory
module you should REINITIALIZE it before you start.

Select LOAD AND RUN from the Editor/Assembler or Mini Memory menu and

To load another Assembly Language program with the Explorer just keep

the following items in mind.

It must be a Load and Run - Non-Auto-Start type program. The PROGRAM
(Memory Image)} type files Auto-Start so these will not work,

It must be loaded BEFORE the Explorer and it must NOT reside in the
Explorer's memory space.

There is a file on the Explorer disk named PREASSEM. This file sets up =a
couple of pointers for the Editor Assembler and Mini Memory Loaders.
These pointers are used by the loaders to determine where a progranm
should load and if it will fit. To use this file simply select LOAD AND
RUN from the menu and type in DSK1,PREASSEM, After this file has loaded
it will return back to the Load and Run prompt., It has now set up the
pointera to reserve space for the Explorer,

Next load your Assembly program and then the Explorer. With PREASSEM
your program will not be allowed to load in the Explorer's!memory space
and it will return a MEMORY FULL Error if it tries to. This means that
your program 1s too large to load into High Memory Expansién along with
the Explorer. However, your program may load if it comtains AOQRG
statements BUT it will not run properly if any portion of i_]; resides in
the Explorer's memory =pace. If you do get a MEMORY FULL Error you will
need to reload PREASSEM before trying the next file. Whene'ver there is
an Error during loading the module resets the pointers,.

The Assembly file will not load with PREASSEM installed if it does not
contain any AORGs and it 1s larger than 6K bytes. By placing a couple of
AORGs in your source code and reassembling the file file you can load up
to 6K in High Memory Expansion and up to BK in Low Memory Expansion. If
you have the Mini Memory module plugged in you could alsc use its 3K of
Ram. This gives you a total of 18K of space for your Assembly flle.

NOTE: You do not need to use PREASSEM if you know for sure that your
program is 6K or less in size, Using this file is just a simple way of
making sure that the Explorer doesn't write over your program, This does"
not apply to AQORG type programa since they do not use these pointers,

S50 Now lets load an LAssambly Language program and run it through the
Explorer. =

— - [
==
|

load DEBUG.
When the cursor comes back load DSK1.EXP, or MEXP for the Myarce card.

Press any key to get past the Explorer's Title screen and bring up the
Main screen

At this point you can start executing your Assembly program with one of
two different methodsa, The first method 1s the same as the one you
normally use for all Non~Auto-Start programs. The second method
simulates an Auto~Start program. Before you start this example write
down)_tha Grom Address and set the Cpu BP to BOBE (the start addreas for
DEBUG

Bon-Auto—-Start Method

1.

2.

Start up the Explorer with CTRL 2 CTRL 3. At this point the Appliocation
Program Screen is the LOAD AND RUN screen of the module.

After the Application Program has clear off the DSK1.EXP file name and
the cursor has returned just hold down the ENTER key until the cursor
disappears to bring up the PROGRAM NAME prompt.

When the PROGRAM NAME prompt appears (in approx 2T seconds) slowly type
in YOUR Program's start name (DEBUG) and preas Enter.

At this time the Editor Assembler module will do a few things before it
starts to execute your program. It checks the name length - Moves the
name from the screen into >834A - Loads the c¢olor table with >13 -
Clears the screen - Sets Vdp Regiater 7 to >F3 - Scans the DEF Table for
the name -~ Saves the satart addresas at >2022 ~ Loads the Workapace
pointer at >20BA - puts the start addresa in RO and BRANCHES ®RO to
start the program.

At this point the Explorer will Break. Clear the Break Point condition
and write down the new Grom Address, We will talk about the Grom
Addresses in a minute, Now you can start the Explorer back up or use
CTRL 1 to see how the DEBUGGER begins. If you are learning Assembly
Language this program is a good example to use since you have the
documented source code for it on the E/A diask., Get a print out of it to
follow as you walk through the program with the Explorer,

e

i

EXECUTING OTHER ASSEMBLY LANGUAGE PROGRAMS Continued

When a program Auto-Starts it takes control right after it is loaded o
the module does NOT: Load the color table - clear the screen - set up V7
- Load the User Workspace pointer to 20BA for the E/A or TO0B8 for the

Mini Mem and the Grom Addreas doesn't change.

Simulated Auto-Start Method
1. Set the Memory Pointer to o===--3 and using the Search Function in ASCII

display find your program's Start Name (DEBUG) in the REF DEF Table. The
start address for this table varies according to the number of DEFs in
your program. For the the Editor/Assembler loader use 2600 for ST and
3000 for FN. For the Mini Memory loader use 7600 for ST and 8000 for FN.

2. When you have found the Start Name leave the Search Function and place
the display in Hex mode. The structure of the REF DEF Table 1s: 6 Bytes
for the name, including tralling space characters, followed by 2 Bytes
that indicate the Start Address (PC). So for DEBUG the Hex display will
be as followa: 44 45 42 55 4T 20 BO BE

D E B U G . .
The firat 6 bytes are the name followed by BOBE which is the Start

Address (PC) for DEBUG.

3. Set the Cpu PC to BGBE'and now you are ready to execute the DEBUGGER

as if it was an Auto-Start progranm, y

GFLLEX And The Groam Address B
TI has a minor problem with Auto-Start programs that use GPLLNK (Grom

aubroutines). Right after a GPLLNK is executed the program-Returns back
to the Module instead of continuing on. If you program in JAssembly you
may have run into this at one time or another. We had you write down
the Grom addresses in the first example to show you how to overcome this

problem.

As you noticed a program that does not Auto-Start changes the Grom
address by +>63 bytes. So, to overcome the problem 1n your programs just
read the current Grom address when your program starts up, add >»63 to it
and then reset the Grom address to this new addresa. By adding >63 to
the current address instead of just setting the address you will not
have to worry about which module (E/A or MM) loaded it. This 1a only
important if your program Auto-Starts and uses GPLLKX (Grom
subroutines). This also applies to the Explorer whaen you use the
Simulated Auto-Start Method. So when you use this method MAKE SURE you
change the Grom address to the new address for your module. Here are the
Grom addresses we have found, but they may be different in your modulea’

Editor Assembler
2082F = Auto=-Start - add »63 to it = >6892 - Non-Auto~Start addreas

Mini Memory .
»>68B3 - Auto-Start - add »63 to it = >6916 - Non-Auto-Start address

69

- [S S

m

DIRECT EXECUTION OF MODULES

L 4

If you own a Navarone Widgit or a Myars or Corcomp Disk Controller you can
use the Explorer to execute modules other than Extended Basic, Editor
Assembler or the Minl Memory. With one of these Disk Controllers you can have
ANY module plugged into the cartridge port and use their Assembly Language
loader utilities (CALL LR for Myarc or the Load And Run Assembly File from
the Corcomp Disk manager). If you own a Widgit you can load the Explorer and
then select one of the other modulea to Explore, However, we have found that
the Widgit has a nasty habit of SPIKING memory when the aswitch 1s moved ao
this 1is NOT very reliable. When it does spike memory, the Explorer usually
goes out to lunch either right away or shortly after you start it up.

Once you have the Explorer loaded and the module you want to Explore on
line you can start executing it in two different ways. The first, and
longest, way is to go through the Power Up routine and then select the
module from the menu. The second way is to do a quiok SEARCH, set the
address and begin executing the module. Sinoe we have already diacussad
the Power Up routine we will Explore thé second method. For thia example
lets Explore the Disk Manager 2 Command Module.

Non-Auto-Start Grom Modules ~
t. Set the Memory Pointer to g~---- and press FCTN 5 -~ Search - and set ST
to 6000 and FN to F7FF {Grom wodule space} and then press Enter or the
down arrow to put the cursor in the Search string input field in ASCII
mode with Basic Bias Off,

2. Type in as much of the module's name as you can. This is the name that
appears on the menu. For some modules this may Jjust be ENGLISH for
others its the name., Include punctuation where its needed {ie: quotes or
/). For our example we will type in "DISK MANAGE - don't forget the
quote or the space between DISK and MANAGER and press Enter {(the cursor
is already on the laat character of the search string).

3. When the cursor ocomes back and the search string has been found press
FCTN 5 to turn of the Search Function. Next Place the cursor in the
Memory Window (edit) by pressing FCTN 9.

. With cursor sitting in the home position {first byte) of the Memory
Window press the left arrow 5 times and then press FCTN z to diaplay the
Hex valuea. This is the start of an Application Program Header and it
has the following format: '

first word = 0000 next Application Program Header - no more

sacond word = 8134 Entry point for this Application Progras
next byte = OQOE Name length for this Application Program
next bytea =z 2244 etc.= "DISK MAKAGER®
Make a note of the Entry Point address.

2. Move your cursor to the Grom AD {Address) field and input the Entry
Polnt address (8134), make sure the Cpu WS is at 83E0 and the PC is at

006A. You are now ready to begin direct execution of the DISK MANAGER 2
" Command Module.)

M

70

DIRECT EXECUTION OF MODULES Continued

Auto-Start Grom Modules (AAFF)

Auto-Start Grom modules are the ones that do not have a name on the Menu
they just start right up. Many of the Scott Forsesman modules are of
this type. Since they do not have an Application Program header you use
a different method to directly execute these modules.

With Explorer loaded and the module on line set the Memory Pointer to
86000~ and look at the firat word in Hex. It should be AA FF. The AL 13
the validation flag for Grom Headers. If its not at this Grom space
check 8000, A00CG, CO00 and E000 until you Find it.

The second byte is the version number. For most Auto-Start Grom Modules
this will be FF. The FF is version number -1 in two's compliment. When a
module has a negative version number it signifies that it has a Foreign
Language Translation routine in it. Scott Forsesman uses this routine to
take control and start up their modules.

The Foreign Language Translation routine starts at 6013 in the Grom
Module space (by default). So just set your Grom AD field to 6013, make
sure the Cpu W5 is at 83E0 and the PC is at 006A and start it up.

Auto~Start Grom Modules {Power Up Routine)

If a module isn't using the Foreign Language Translation rputine it ia
possible that it is taking control with its Power Up routinké. A standard
Grom Module Header can reside at g60600, g8000, gA000, gCOOO or gEOO0 and
it has the following format; !

>x000 = >AA Valid GROM Header Identification Code ¥

>x001 = >00 Version number)y

>x002 = >00 Number of Application Programs

»x003 = J>00 Reserved - not used

2x004 = >Q000 Address of Power Up Header

>x006 = >0000 Address of Application Program Header

>x008 = >0000 Address of DSR Routine Header

X004 = >0000 Address of Subprogram Header

>x00C = >0000 Address of Interrupt Routine Header - none in GROM
>x00B = >0000 Reserved for future expansion.

Replace the x (>x004) with the proper addreas (6,8,A,C or E). This
header format is also used for Rom modules (Cpu memory 6000-TFFF) and
DSR headers (Cpu memory 4000-~5FFF with the DSR epabled)

L

T. Make a note of the value in gx004 - the Power Up Header addreas, if i

2.

S

is not zero. Set the Memory pointer to this address and make a note of
the second word. This is the start address for the Power Up routine,

Sét the Grom addreas to this second word, make sure the Cpu WS is at
83EC and the PC is at 006A and start it up. :

T

e

DIRECT EXECUTION OF MODULES Continued

-

Bon-Auto-Start Rom Modules

5-

Auto-3tart Rom Module

These modules are ones that were produced by some of the third party
modules companies such as Atari Soft that generate a module name in the
Menu. The procedure for direct execution of these Dodules £a as follows:

Set the Memory Pointer to Geewe- and press FCTN 5 - Search - and set ST
to 6000 and FN to TFFF {Cartridge Rom module space) and then press Enter

or the down arrow to put the cursor in the Search stri input field in
ASCII mode with Basic Bilas orr. he

T¥pe in as much of the module's name as you can, place your ocursor on
top of the last character in the search atring and presa Enter

When the cursor comes back and the search string has been found preas
FCTN 5 to turn of the Searoh Function. Next place the cursor in the
Memory Window (edit) by presaing FCTN 9.

With cursor sitting in the huma‘pnﬁitinn {(rirst byte) of the Memory
Window press the left arrow 9 times and then press FCTN = to display the

Hex values. This is the start of an Application Program Header and it
has the following format: €

first word Z XXXX = Next Application Program Header

second word = xxxx = Entry point for this Application Program
next byte = XX = Name length for this Application Program
next bytes = xxxx eto.= (module's BenNuU name)

Make a note of the Entry Point addreas (second word)

Move your cursor to the Cpu PC (Program Counter) field and input the
Entry Point address, make sure the Opu WS is at 83E0 and you are now
ready to begin direct execution of a Non-Auto-Start Rom Cartridge.

Most of these stapt up with the Power Up Routine, ao:

1.

2.

Set the Memory Pointer to ¢6004-, make note ofltha first word (Power Up
Routine Header address), set the Memory Pointer to this address and make
hote of the second word (Entry Point for the Power Bp Routine).

Move your curscor to the Cphu PC field and input the Entry Point, make

sure the Cpu WS 1s at 83E0 and you are noy ready to begin execution
the Auto-Start Rom Cartridge. ¢ - of

DIRECT EXECUTION OF MODULES Continued

A Few Notea On Modules

1. If you hop directly into a module or TI Basic AFTER you have been
playing arcund with other items it 1s posaible that:

A. The character set may not be right.
B. The ¥dp registers are no longer set to the Power Up settings (see

Appendix)
* C. A copy of Vdp Register 1 is NOT ian >83DU4. This may cause your screen

to go blank when you press a key. The Key scan routine resets V1 with
whatever is in the most significant byte of >83D4 when a key 1ia

pressed.

2. 3ome modules PRESUME that they are being executed right after the Power
Up Routine a0 they fail to clear the screen or set up colors and Vdp
Regiaters. If this occurs you will either have tc set these items
yourself or go through the Power Up Routine to execute the module

properly.

j. MANY Modules use Auto-Sound processing and Auto-Sprite motion that is
generated by the Interrupt Routine so interrupts will need to be enabled

for proper execution. '

a

4. MANY Grom Modules use the Vdp Interrupt Timer at >8379 as a delay timer
to compare vaiues to before continuing. If R3 contains >8379 and you
don't seem to be getting anywhere then either: Change the value at
>B379 to one greater than the one that keeps showing up in RO or enable
interrupts ac this counter increments itself,

5. Some modules walt for >B3CE to be zero before they continue (Autoc sound
processing completed). If R3 contains >83CE just preass CTRL 5, this will
turn off the sound and zero out >83CE for you.

6. Some modules, like TI LOGO, want to use the memory space that Explorer
occuples and as zuch they will not exeoute properly.

Other then these few items the execution of modules is very similar to
executing Basic or Assembly Language programs. So have fun and DON'T
atay up too latel

73

-
+-' A gy — ---—---—--——---ﬂh--- i . - e e W - i g N N e N S i i TS S v - degl B S e g N S . . -‘-----*

{>0000 |CONSOLE ROM Interrupt Vectors, XIOP Vectors, 8K Bytes |
]] GPL Interpreter, Floating Point Routines, !
| >1FFF | IMLLNK Vectors, Low-level cassette DSR eto. |
-lu-.--ﬁ———-n—--——---—---—---l—-—--l-----ln-----—--——--—---i-u----u—---
---—-----*---n—---—-‘-
1 >2000 |LOW MEMORY KXPARSION RAM 8K Bytes !
| | Varies according to the loader used (ABsenbly). |
| >3FFF |} Generally not used by Extended Basic programs. }
+—--——----—---—--—-—-————l—-———ﬁ--—---———--l——---—-——-—l—----—
----------—----1-------—4
{54000 |DSR ROM Device service routines 8K Byteas !
I | Determined by CRU bit setting |
| >5FFF | Disk Controller, RS232, P-Code etc. | l
+-_—--—“-‘-_—--ﬁ---_—--_-—__---_------—---ﬁ--hh-------------‘-’--
------- A -
>6000 CARTRIDGE PORT ROM (2 Mini-Mem RAM) 8K Bytea !

12K of Extended BASIC ROM, Upper 4K & >7000 - >7FFF !

+37FFF 1s flipped to page in another 4K for a total of 12K |
8000 . |RAM MEWORY MAPPED DEVICES VDP, GROW, SOUND & SPEEOR 8k Byves |
;gggg duplication of scratch pad ram @ >8300 =>83FF !
;g:gg duplication of soratch pad ram @ >8300 =)>83FF 5
>8200 duplication of scratch pad ram @ >8300 ->83FF !

!

>BEFF I ekt LT —— -t---------------—--....---.____..___-___-

>8300 CPU SCRATCH PAD RAM

SOUND CHIP

>BTFF e e L T —— A e - S - S -ﬁ-------*-------- T :

>8800 VDP READ DATA
>8802 YDP STATUS (MSBy)

>8C00 ¥DP WRITE DATA
>8C02 | VDP REAB{HHITE ADDRESS (to write set MSb of the MSBy to 01)

>3000 | SPEECH READ !

{ >93FF | }
>9800 | SPEECH WRITE |

! 29800 | GROM/GRAM READ DATA |
{ >9802 | GROM/GRAM READ ADDRESS]
| D9BPF | |
| >9C00 | GROM/GRAM WRITE DATA i
{ >9C02 | GROM/GRAM WRITE ADDRESS |
| >YFFF | !
+-- R . B W e e e e - iy A - g s B e e - ol . L2 2 7 -ﬂ----'---- L4 L 1 1 = “-+
: >4000 :HIEH MEMORY EIPAESION RAM 24K Bytes |
|

| I Extended Basic High Memory Usage, Free apace .end |
: : pointed to by CPU RAM PAD address >8386 |
. !

: ; Nuneric values I
: ; Line number table o :
et bl LR LT T R ——— R R D S e o e e B s W B . S |.I

: : X-Basic program apace)
|SFFFF | :
+--— e S . W S e b L 1 T e - S B dey e e LT] A - - - --------—--- ----—--—------- e . T] +

P ——]

CONSOLE ROM MEMORY MAF {most consoles)

o S - Sl S B el S S e B i e i f S B e e Sl B A e e e T ——— o

>0024
»>0038
1 >0040
| >0044
{ >0048
| 004K
>0060
§ >0070

+--- s i e e S ol e ol e, sl . N e k- Mg Al e N M e ik B A A A B e A e A S A N - A A N S N U U A A A A VN N B L S S . A gy e e, - v e _-+

>0082

>0C36

20C36
>0C38
>0C3A
20C3C

»>0C3E
>0C40
>0Ch2
>OChY
>0CU6
YOCHU8
>0ChLA
>0CiC
>0CLE
20C50
>0C52
0C54
>0C56
»0C58
»0C5A
H0C5C
>0C5E
>0C60
20062
64

>0C66

thru
20CTA
XICTC

A ey g BN Sy iy

Power Up Routine Vector - Level 0 Interrupt (Reset)

Level 1 = 9901 Interrupt Vector

Unused interrupt vector - points to screen timeout routine

Cpu olock speed for Baud rate generation and '4A' for Validation|

Assembly Language Key Scan Entry Point (B @>02B2) - subtract &4
from the branch address to get the Gpl entry point.

Data = zero and eight

Instructions for the unreleased T1 Debugger board

Branch and Link atatement for BREAKPOINT check

Entry address of Breakpolnt for RS5232 and Basic |
Subtract >10 from it to get the start of the kKey range check

Subtract >1A from it to get the start of the key debounce
Subtract >tC from it to get the end of the key routine
PONER OP ROUTIEE - astart of conscle reset routine
More instructions for the unreleased TI Debugger board
XOP 0 vector -~ used by the TI Debugger board
XOF 1 vector - user defined - Not supported on early conscles
XOP 2 veotor - user defined =
START OF GPL INTERPRETER
Set Grom/Gram address l
Next Gpl instruotion

GPL BRANCH VECTOR TABLES
0270 - Vector for Gpl miacellaneous instruction executor

for >20 = MOVE instruction

061E = Veotor
011A - Vector
010E -~ Yector

Miscellaneous Inatructions

0838 = Veotor for >00 - RETURN instruction 4

083E -~ Vector for >01 - RETURN WITH CONDITION BIT imatruction
029A - Vector for >02 - RANDOM instruction : j

02AE - Vector for >03 - SCAN (Key Scan) instruotion

029E - VYector for >04 -~ BACK {Screen Color) instruction |
0104 - Vector for >05 - BRANCH instruction)

0854 - Vector for >06 - CALL instruction : |
0542 - Vector for >07 - ALL (Clear Screen} instruction

Q4UDE - Vector for >08 - FORMATTED BLOCK MOVE instruction

Q0OF4 - Vector for >09 -~ HIGH instruction -

00F4 = Veotor for >IA - GREATER THAN instruction

0024 -~ Vector for >0B - EXIT (Power Up) instruction

0OF4 - Vector for >0C = CARRY instruction

00F4 ~ Vector for >0D - OVERFLOW insatruction

18C8 - Veotor for >0E - PARSE {Basic) instruction

0608 - Vector for >OF - XML instruction

1920 = Vector for >10 = CONTINUE (Basic) instruction

1968 - Vector for >11 - EXECUTE (Basic) inatruction 1
19F0 = Vector for >12 = RETRUN TO BASIC (Basic) inatruction 1
082C = Vector for >13 = Unlisted - returns the Grom Base addreass

>0C0C - Vector for >14~>1E - Unlisted -~ points to routines for

»0C14 - Vector for >1F - Unlisted -~ pointa to routine for the

for >80 - BRANCH ON RESET inatruction
for >60 - BRANCH ON SET instruction

= »C36 Points to start of branch tables for Gpl instructions

from a library / program cali

the TI Debugger Board

TI Debugger board -~ part of |
its Breakpoint routine.

T5

>0CTE

JO0CTE | >0136 - Vector
>0C80 20134 = Vector
082 | >0140 - Vector
>0C84 013E -~ Yector
>0C86 0144 - VYeotor
>0C88 | >0162 - Vector
XC84 | >016E -~ Vector
>0C8C | >00EA - Vector
| >0CBE | >0186 - Vector
»0188 = Vector

20184 - YVector

20182 - Vector

>0C0C -~ VYector

20C0C = Vector

20C0C = Vector

J0C0C - Vaotor

>)188 - Vector

0186 ~ Vector

01CE - Yector

>01EA - Vector

20190 -~ Vector

20196 - Vactor

2019A - Yector

>019E = Vector

201A2 -~ Vector

>00D6 - VYector

200DA = Vector

200DE = Vector

>00CC = VYactor

>00EC - Vector

>00E2 - Vector

201B0 - Vector

>01BY - Vector

201BB - Vector

»01C2 -~ Vector

>06D2 - Vector

H0C0C - Vector

>05C8 ~ Vector

>004E - Vector

X)COC = Vector

>0672
>0664
>0682
20686
>06BA
20698

mip

for
for
fdr
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

- 20660 - CPU _SQURCE

GROM SOURCE
- VDP SODRCE
CPU DESTINATION
GRAM DESTINATION
- YDP DESTINATION
VDP REGISTER DESTINATION

>80
>82
>84
>86
>88
>8A

»8C -

>8E
>90
»92
>94
>96
>98
>G4
>9C
»9E
240
>AlY
>AB
>AC
»BO
>BY
>B8
>BC
>o
>Ch
>C8
>CC
>D0
>DY
>D8
>DC
>E0
EY
>ES8

L I I |

AN I T T R T B I

’ED -

>F0
>F6
>F8
FC

MOVE INSTRUCTIOR VECTORS
g:aae tables are used by the MOVE instructions.
ey move blocks of memory (Data) from a deaignated s
to a designated destination. 8 oares
The first three entries move bytes from the aource.
The next four entries move bytes to the deatination,

Gpl instructions with a negative opcode (Greater than >TR)

ABSOLUTE instruction

NEGATE instruotion

INVERT instruction

CLEAR instruction

FETCH instruction

CASE instruction

PUSH instruection

COMPARE ZERO instruction
INCREMENT instruotifon

DECREMENT instruction

INCREMENT BY TWO instruction
DECREMENT BY TWO instruction
Unlisted (TI Debugger board)
Unlisted (TI Debugger board)
Unliated (TI Debugger board)
Unlisted (TI Debugger board)

ADD instruction

SUBTRACT instruction

MULTIPLY imstruction

DIVIDE inatruction

AND instruction

OR instruction

IOR instruction

STORE instruetion

EXCBANGE instruction

COMPARE HIGH inatruction

COMPARE HIGH OR EQUAL instruction
COMPARE GREATER THAN instruction
COMPARE GREATER THAN OR EQUAL
COMPARE EQUAL instruction
COMPARE LOGICAL

SHIFT RIGHT ARITHMETIC instruction
SBIFT LEFT LOGICAL instruoction
SHIFT RIGHT LOGICAL instruction
SHIFT RIGHT CIRCULAR instruction
COINCIDENCE instruction

Unlisted

INPUT/OQUTPUT inatruction
(nlisted (saves Grom address and base)
Unliated

(Block Move >20->3F)

f

P e
'—-—_-—l—-—-—_-‘—.—.—_“"_—-

e e e e e e e e e e e e e e e e e +
i >0CDC FORMAT IISTIUQTIDI TABLE - The Formatted Block Move instruction
is a sub interpreter within the Gpl interpreter.
>0CDC >050A = Vector for STRING ACROSS
>0CDE >0508 - Vector for STRING DOWN
>»OCEQ 20504 = Vector for REPEAT ACROSS
»O0CEZ2 20502 - Vector for REPEAT DOWN
>0CE4N »0534 = Vector for SKIP ACROSS
MOCE6 | 20532 - Vector for SKIP DOWN
>OCES »0534 - VYector for REPEAT BLOCK
>OCEA >056C - Vector for SPECIAL - write color table or loads XPT, YPT
>OCEB INPUT/0U0TPUT INSTRUCTION TABLE
>OCEB >»05D6 - Vector for EXECUTE SOUND LIST I
>0CEE >05D6 - Vector for EXECUTE SOUND LIST |
>O0CFO >05E8 - Vector for CRU BIT INPUT |
»0CF2 >05EA - Veactor for CRU BIT QUTPUT |
>OCFU >1346 ~ Vector for CASSETTE WRITE ROUTINE (Low Level)]
! >0CFé6 >142E - Vector for CASSETTE READ ROUTINE (Low Level) }
} >0CF8 >1426 ~ Vector for CASSETTE VERIFY ROUTINE (Low Level) |
!
{>0CFA LOCATION OF ALL 16 IML TABLES (Vectors) }
| >OCFA >0DtA ~ Vector for - >00 - Floating Point Table
| >0CFC >12A0 - Vector for = >»10 - Pointer to XTAB
| >0CFE 22000 - Vector for - >20 # | !
! >0D00 >3FC0 - Vector for - >30 # The Rest through >8300 arse
»>0D02 »3FEQ0 - Vector for - >40 % pointers to the other XML I
>0D0Y 24010 - Vector for - >50 # Tables |
>0D06 4030 - Vector for - >60 &)
>0Dh08 >6010 = Vector for = >70 ® g]
XOD0A >6030 -~ Vector for - >80 @ : }
0D0C >TQ00 = Vector for - >0 # :
>0DOE >8000 - Vector for = DAD ® ;
| >0D10 >A000 ~ Vector for - DB ® _
»0D12 >BO00 = Vector for - >0 # ~
| >0D14 >C000 -~ Vector for = >p0 # ’
>0D16 >D000Q - Vector for = >E0 ®
>0D18 >8300 - Vector for - >FQ &
>0D1A FLOATING POINY ROUTIMES TABLE
>0D14 >0000 -
>0D1C 20F54 ~ Vector for - ROUND Check to see if FAC needs rounding
| J0DIE >0FB2 - Vector for - ROUNU Round FAC starting at digit
specified in ARG.
>0D20 20FAY - Vector for - STEXIT Store status
>ob22 >OFC2 = Vector for - QVEXP Over/underflow
>0D24 >0FCC - Vector for - 0OV Part of OVEXP
| >0D26 >0D80 - Vector for - FADD Floating point add .
»0D28 >0DTC = Vector for - FSUB Floating point subtract
| >0D2A >0E88 -~ Vector for - FMULT Floating point multiply -
20D2C >FFPY4 - Vector for - FDIV Floating point divide
20D2E >0D3A = Vector for - FCOMP Floating point compare
>2D30 »0D84 - Vector for - SADD Stack add
! >0D32 | >0D7T4 - Vector for - SSUB Stack subtract’
»0D34 >0EBC - Vector for - SMULT Stack multiply
»0D36 >QFF8 - Vector for -~ SDIV Stack divide
D38 »0DY6 - VYector for - SCOMP Stack compare
i e e e e e s e e e e e o o e e e e +
T7

CORSOLE ROM MEMORY MAP Continued

ATt oy e mme. .

- LTI T S S S,

CONSOLE ROM MEMORY MAP Continued

STITEHBIT TABLE - Used by EXEC (Execute)

- VYector for - CSN

~ Vector for - CSNGR

- Vector™ fnr - CFI

- Vector for - SYM

- VYector for - SMB

= Vector for - ASSGNV

- Vector for - SCHSYM

~ Vactor for - VPUSH

~ Vector for -~ YPOP

- Yector for = SROM

- Vector for - SGROM
- Yector for - PGMCH
- Vector for - Spare

- Vector for -~ ELSE

- Vector for - Reserved -

- Vector for -~ Reserved

- Vector for - IF

- Yector for - GO

- Vector for - GOTO

- Vector for - GOSUB

- Yector for « RETURN

- Yector for - DEF

- Vector for -~ DIM

- Yector for - END

- Vector for -~ FOR

- Vector for - LET

- VYector for - BREAK

- Yector for -~ UNBREAFR

- Yector for = TRACE

- Vector for -~ UNTRACE

- Vector for ~ INPUT -

~ Vactor for = DATA

- Vector for = RESTORE

= Vector for - RANDOMIZE

- Vector for - NEXT

- Yector for - READ

- Yector for - STOP

- Vector for - DELETE

- Vector for - REM

- Vector for - ON

- Yector for - PRINT

- Vector for ~ CALL

~ Yector for = OPTION

- Veotor for - OPEN

- Vector for - CLOSE

- Yeactor for -~ SUR
- Vector for = DISPLAY

UBED BY PARSE

-~ Yector for = (

- Vector for - &

~ Vector for - Spare

- Vector for - QR

- VYector for = AND

- Yeactor for ~ XOR

- Yector for - NOT

Convert ASCII to floating point
Grom entry for CSN routine
Convert floating point to integer
Fetch BASIC symbol table entry
Feteh BASIC symbol table value
Assign BASIC variable

Search BASIC symbol table

Push value onto VDP stack

Pop value from VDP ataock

Search ROM. Part of DSR routine
Search GROM. Part of DSR routine
Get BASIC program character

!

i m r————— e

256 BYTES OF SCRATCH PAD RAM ~ XB USE

CONSOLE ROM MEMORY MAP Contimued
. ——— T LT T — ot e o A o B

+.- ------------------ g i W s S sy s e sl i e - Al e . S M T P S W S S B R T R R A +

Lo] _—--+

79

80

>1CF0 LED TABLR BY PARSE I |XB TEMPORARY STORAGE AREA ¢ |
SMCFO 31A2C = Vector for - = | | This area of Scratch Ram is used by X-Basic and Basic as a 1
>ICF2 >1A2C = Vector for - < I | temporary holding area for the different routines.
>1CrY >1A2C = Vector for - > | | tewporary varijiable
>1CF6 >801E - Vector for - + I | temporary variable
>1CF8 >8020 - Vector for - - | | temporary variable
| >ICFA | >1A2C -~ Vector for - ® | | temporary variable - Record Length on file acceas
CFC | >1A2C = Vector for = / ! temporary variable - Address of Sprite Atttribute List
| >ICFE | >1A2C - Vector for - ° temporary variable
| >iD00 | >1A2C - Vector for - Spare temporary variable
| »1D02 | >8010 -~ Vector for =~ Quoted string temporary variable - increment value for Auto Num
| >1po&t | >1ASC = Vector for - Unquoted string (NUMERIC) temporary variable - used in CALL LINK parameter passing
| >1D06 | >1A2C - Vector for - Line number temporary variable = used by CHAR type statements
{ >»1D08 | >804A - Vector for - EOF temporary variable - copy of VDP reg 1 for some commands
| >1D0A | >8022 - Vector for - ABS temporary variable -~ DSR Link flag for some commands
| >1D0C | >8024 -~ Vector for - ATN .
| >IDOE | >8026 - Yector for -~ COS XB PERMIREXNT STORAGE AREA [
i >1D10 »>8028 - Vector for - EXP This area of Scratch Ram is used for specific items by X-Basic |
| >1Dte2 >802A - Yector for - INT Used by LINK, LOAD & rtn control to Basic also String space bgn
{ >1D14 >802C -~ Vector for - LOG Points to 1st free add in VDP RAM als¢e String space end
| >1Dté >802E = Vector for - SGN Points to allocated str space - PAB Error - Temp string pointer
>1D18 >8030 ~ Vector for - SIN Start of current statement |
>1D14A >8032 - Vector for - SQR } Current Screen Address
>1D1C >8034 -~ Vector for - TAN Return error code from Assembly Language Code
! >1D1E >8036 - Vector for - LEN VDP value stack base pointer !
>1D20 >8038 ~ Vector for - CHR$ Return address from Assembly Language Code |
| >1Db22 >803A - Vector for - RND NUD Table for Assembly Language Code. {
>1D2Y >8040 ~ Veotor for - SEGS Ending screen display pointer !
| >1D26 >8046 -~ Vector for - POS Program text or token code pointer |
>1D28 >8044 -~ Vector for - VAL f Pointer to current line number in line number table |
| >1D2A | >8042 - Vector for - STR$: Start of Line number table pointer ;
| >1D2C >80U48 ~ Vector for - ASC ; End of Line number table pointer]
| ‘ | Data pointer for read !
TABLE USED BY CONT (Continue) N Line number table pointer for read |
| >1D2E >1ID5C = Vector for - = \ Addreas of intrinsic Poly constants |
>1D30 >1D3E = Vector for - < ' Subprogram symbol table pointer !
| >1D32 >1D4C - Vector for - > PAD address in VYDP RAM (first link) PAB list |
>1D34 >IDEC - Vecator for -~ + { Symbol table pointepr I
>1D36 >1E18 - Vector for - - | VDP Ram free space pointer '
{ >1D38 »>1E24 - Vector for -~ # } Current char/token
! >1D34 >E30 ~ Yector for = / | Extended Basic Program RUN = 255 STOP = 0 (w/o 'READY')
>1D3C >1E3C - Vector for - ° | Extended Basic System Flags
| I ! Bit 0 1 = Auto-Num Bit U4 1 = Edit Mode
>IE9C | VPUSH for GPL 1 1 = On Break Next 5 1 = On Warning Stop |
>IBAA | VPUSH (IML »>17) 2 6 1 = On Warning Next
|>1F2E | VPOP (XML >18) 3 1 =z Trace 7 ,
I y Crunch buffer destruction level {
| | This map contains mostly Vectors (Entry Pointa) for the h Last subprogram block on stack l
| | various routinea. By watching the addreas in the PC field e e e e e e e e e e e e e e e e o e
of the Explorer you can tell which of these routines is y
| being executed. You can alsc use these vectors to set the !
Cpu Breakpoint (BP) to halt the Explorer on a given routine
I 30 you can Step through it,
e D . . e A B 7 o o e +

256 BYTES OF SCRATCH PAD RAM Continued

b i o e L e e T T —— o e et A e e e +
>834A4 |FLOATIEG POINT and DSR udage, 36 bytes 1
>B34A FAC (Floating point asccumulator) PAB I/0 OPCODE |
>834B for floating point routines PAB FLAG/STATUS |
>834C | this area holds & number in PAB DATA BUFFER ADDRESS |
>834E radix 100 notation. PAB LOGICAL REC LERGTH |
>834F) PAB CHARACTER COUNT
i >8350 | FPAB RECORD NUMBER
>8352 PAB SCREEN OFFSET
>8353 PAB OPTION LENGTH |
>8384 FLOATING POINT ERROR CODE PAEB DEVICE LENGTH
>8356 | SUBRTN POINTER / DSR's pnts to 1st char after PAB in VDP l
>8358 DSE |
] »8354 DSR |
»835C ARG (Floating point argument) DSR
and DSR usage DSR
DSHR
>836C | FPERAD ({float pnt err add in Grom 7) DSR
>836D Set to >08 for DSR call DSR
-------- e e e e e e B o e B e
>836E INTERPRETER and FLOATING POINT GPL VALUE STACK POINTER
>8370 HIGHEST AVAILABLE ADDRESS IN VDP RAM
1>8372 LSByte OF DATA STACK POINTER = A0 = (>8340) |
{>8373 LSByte OF SUBROUTINE STACK POINTER = 80 = (>8380)
1>83T4 EEYBOARD NUMBER TO BE SCANNED Default =0
1>8375 ASCII CODE DETECTED by SCAN routine alao SGN for float/point
1>8376 | JOYSTICK Y-STATUS by SCAN routine also EXP for float/point
8377 ! JOYSTICK X-STATUS by SCAN routine
{>8378 RANDOM NUMBER GENERATOR RND's >0 =>63 (0=-99) |
>8379 | VDP INTERRUPT TIMER >0 «O>FF (0-255)
>B3TA HIGHEST SPRITE # IN AUTO-MOTION >0 ->20 (0-32)
>8378B COPY OF VDP STATUS REGISTER 3
>837C GPL STATUS BYTE (Set to 0 for a DSR CALL) {(>20 =Key Presa)
»831D CHARACTER BUFFER BYTE to VDF RAM screen table I 1
>837E POINTS TO THE CURRENT ROW on the screen :
>B3TF POINTS TO THE CURRENT COLUMN on the ascreen .
-------- e e e o D D e A A e s e e e S A s o T S e o e e e e A
>8380 THE DEFAULT SUBROUTINE STACKX (Used by GPL Routinea)
>8380 Reserved For Basics interpreter - -
»>8382 Reserved For Basics interpreter
>8384 Reserved Highest Address in Expansion Memory
>8386 Reserved Highest Free Address in Mem-Expansion
>8388 Reserved For ithe Basic interpreter Sub stack base
>8389 | Reserved For the Basic interpreter Exp-Mem Flag
| >838a RETURN ADDRESS STACK FOR GROM SUBROUTINES
) (ourrent Grom Address pushed to top of stack during Key Scan)
i >839E
| >8340 THE DEFAULT DATA 3TACK (Used by GPL Routines) .
| this area holds variocus information according to the GROM '
| routine being executed,
} I ;
| >83BF |
e o e e e e e o e e O - e e e +

81

- ..._-_a.-.—____._._.,__‘ . -

re—

256 BYTES OF SCRATCH PAD RAM Continued

i e e - o e e T D 5 e e S e s e o D S e . P e e s S e e 2t e e

1 >83C0
>83C0
»83C2

-ﬂn—-—l—-l-'---——-l-"--_n—-

RO
R1 8Bit 0O 1
1 1,

RANDOM NUMBER SEED 2 Bytes >0-FF >0-FF
disable ALL of the following

disable Auto Sprite Motion

I
I
|
|
2 1 = disable Auto Sound Processing |
3 1 = disable The QUIT Key |
Bits 4-15 not used]
R2 ISR HOOK - Start address of User Interrupt Routine |
R3 Reserved for Keyboard state and debounce info |
R4 Reserved for Keyboard state and debounce info I
R5 Reserved for Keyboard state and debounce info |
R6 Pointer to Sound Table - also see >83FD {
RT Number of Sound Bytes for Auto Sound Processing (0100) I
R8 Varies (>0000 for Cassette DSR Link)]
R9 Varies !
R10 CONTENTS OF VDP REGISTER 1 (used for key scan) f
R1% SCREEN TIME OUT COUNTER (blanks when incrementsd to 0000) |
R12 RETURN ADDRESS SAVED BY THE SCAN ROUTINE (0ld R11)
R13 Return WS for context switch (RTWP)
R14 Return PC for context switch (RTWP) }
R15 Return ST for context switeh (RTWP)

(ALL Registers used by GPL interpreter) |

RO Varies NOTE: RO - R7, Rit and R12 I
R1 Varies are modified by Key Scan
R2 Varies
R3 Varies
R4 Variles
R5 Varies - Used by Interrupt Routine
R6 Varies - Used by Interrupt Routine
Rf Varles - Used by Interrupt Routine
R8 Cleared on Return fronm Interrupt Routilne
R9 GPL Interpreter use
R10 GPL Interpreter use
. K1Y RETURN ADDRESS for BL instruction and User Interrupt
R12 Varies - Cru Base Address for key scan and DSRs
R13
R14 STATUS FLAGS

Bits 0 - 7 Control the cursor blink speed &
Auto sound processing. The value in this byte
increments the counter at >8379
Bit O b 1 =
1 5
2 1
3 1

16K Vdp Rax

Cass Interrupt Timer & 1 =z Mult{-Color mode
T Sound table looation
1 = VYDP

Cass Yerify

0 =z Grom/Grans

I
|
I
I
I
I
I
)
|
I
i
GROM/GRAM READ DATA port (9800) {
I
I
I
I
I
I
I
:
R15 VDP WRITE ADDRESS port (8C02) |
+-

+- L 1 1] Hﬁ-+-‘- - S e W S e e A S e e e Y ol s e - S B - e B kel LT] T —— i - -

82

----—-—-_---_—----ﬁ-h----_-----——---—------“--—--

XML link to name link routine pointer.
First Free address in low mem=-exp.
Last Free address in low nen-exp.

Constant that indicates CALL INIT has been executed.
UTILITY VECTOR TABLE (ie:

BLWP EKSCAN)

Utility workspace pointer for BLWP @NUMASG
NIMASG Utility starting address.

Utility workapace pointer for BLWP &NUMREF
NUMREF Utility starting address.

Utility workspace pointer for BLWP @STRASG
STRASG Utility starting address.

Uti1lity workapace pointer for BLWP &@STRREF
SIRREF Utility starting address.

Utility workspace pointer for BLWP @XMLLNE
IMLLMK Utility starting address.

ULility workspace pointer for BLWP @KSCAN
KSCAN Utility starting address.

Utility workspace pointer for BLWP SVSBW
VSBW Utility astarting address.

Utility workspace pointer for BLWF &VMBW
VMBW Utility starting address,

Utility workspace pointer for BLWP #VSER
VSER Utility starting address,

Utiiity workspace pointer for BLWP @VMBR
VMBR Utility starting address.
Ut1lity workapace pointer for BLWP 8VWTR
VWIR Utility starting address.

Utility workspace pointer for BLWP &ERR
ERR Utility starting address.
UTILITY WORK SPACE STARTS HERE

End of work space

P . "‘_":i'

Start of XML link to name link routine.
(Finds the name in the REF/DEF Table)

ERR Routine.
NUMASG Routine.
NUMREF Routine.
STRASG Routine,
STRREF Routine.
XMLLKNK Routine.
KSCAN Routine,
VSBW Routine,
VMBN Routine.
YSBR Routine.
VMBR Routine.
WTR Routine,

{Return Error code to basic)
(Numeric Assignment)
(Numeric Reference)
(String Assignment)
(String Reference)

(Link to system Utilities)
(Keyboard Scan)

(VDP single byte write) |
(VDP multiple byte write)
(VDP single byte read)
(VDP multiple byte read)
(Write to VDP register)

(NOTE: No GPLLNK or DSRLNK in X-Basic CALL INIT)

Address Value
o e e e e e -
>2000 22054
>2002 >24F A
152004 >5000
»2006 2AASS
>2008
>2008 >2038
>2004 22096
2200C »2038
| >200E >217E
>2010 >2038
»2012 >21E2
22014 >2038
>2016 2234¢
| »2018 >2038
I >201A »2432
I >201C >2038
| >201E >246E
| >2020 >2038
| >2p22 22h8l
| >2024 22038
| >2026)} >2490
| >2028 | >2038
| >2024 >2H3QE
| >202C »>2038
} >202E >2UAA
>2030 »2038
22032 >24B8
22034 22038
22036 22090
22038
| RO-R15
|
1>2057 |
>2058 }
1>2054 |
| !
22090 Start of
>2096 Start of
»21TE Start of
1>2182 | Start of
>234C Start of
>2432 Start of
1 >246E Start of
f>2484 } Start of
| >2490 ! Start of
| >249F Start of
d2UAL | Start of
>24B8 Start of
224FA

First Free Address in Low Mem-Exp. pointed to by >2002

- continued next page -

83

L — -

| e '
The REF/DEF Table resides at the end of 8 !

! # Low Memory Expansion. Each entry is 8 bytes long. # I
& 6 for the Name and 2 for the starting address. "

" CALL INIT in’ X-Basic leaves this Space empty. & I

e e e e e . |

I

i DEF Name (CALL LINK or BLWP &) 6 characters.
>3FF6 | Start address of the above routine, 2 bytes.

| DEF Name (CALL LINE or BLWP €) 6 charactera,.

| Start address of the above routine, 2 bytes.
>3FFF |END OF LOW MEMORY EXPANSION

Extended Basic HIGE MEMORY EXPAKSION usage

+h -------------------------- e e 1 . o . . . e e B e B S e e B B e . . B e e e +

>A000 |START OF HIGH MEM-EXPANSION | I
(If Men-Exp is' present then the value at >8389 |
Wlll be >E7 while the program is running)

---——------—---—----------—-------—_--_---ﬁ------—-—-----——-

! Starting point of the Symbol table in VDP RAM is

i ﬂ---—---—---H--—----_--ﬂl—---—--h----—---ﬁh----------—-#------h-

NUMERIC VALUE TABLE (in RADIX 100 notation)

pointed to by >833E while the program is running,
The Symbol table then points into the Numeric value
table for each of the variable names.

! | Line numbers are always stored highest # to lowest # |

Highest Free Addreas in Mem~Exp. pointed to by >8386 [

' —-----ﬁ-—--ﬂ---h---—-_—-—_-—.-----——-----------------—----— I

LINE NUMBER TABLE - 4 Bytes per entry.
| Line # = 2 Bytes] Start Addresa of line = 2 bytes |

Starting addresa of this table is pointed to by >8330
Ending address of this table is pointed to by >8332
Current line number being referenced

--_—---—--h---'“l_—_--_--—----— e - e g —-F---—---_-_—-ﬁﬁ-—--—-

Start of program space = (value at >8332)+1
Programs reserved words have been converted to Token values |
and the line pumbers are removed from the beginning of
¢ach line. The format for each line is as followa: !

1st Byte = Number of bytes for the line
Following Bytes = {Start Address) Actual line code with

Token values replacing reserved words,

L

|

}

I

Last byte = >00 }

|

>FFET? Highest address to be used in Mem-Exp. pointed to by >8384 !

}

>FFFC Workspace Pointer for LOAD Interrupt (non-maskable interrupt, |
>FFFE Start Address (PC)} for LOAD Interrupt not DSK1.LOAD) |
>FFFF RED OF BIGH MEMORY EXPARSTION |
___l —————————————————————————————————————— S B e A e e — e - A i g W e e Y A e A A e . o i

84

Addr

>0000

>02FF

20300
2031F

»0320
>036F

>Q370

203F0
>03F8
20400
>0408

>0TFF

>0800

>3FFF

SCREEN IMAGE TABLE !
Start CHAR PATTERN TABLE
+96 Offset ()60 Bias)

END SCREEN IMAGE

COLOR TABLE

oL N — o i .

CRUNCH BUFFER

CHARACTER PATTERN TABLE
+96 Offset {(>60 Bias)

>03C0-03DF Vdp Roll Out

| 768+8®%character number=
| address in decimal

| Character number 30

Character number 3t

Character number 32 |

Character number 33
eta.

I

!

l

| |
I

}

|

e L e T —p——y
PABS (Value Stack)
STRINGS

SYMBOL TABLES

NUMERIC VALUES

LINE NUMBER TABLE
PROGRAM SPACE

el Ny el A E—

I
| DISK FILE BUFFERS |

+-—-——-—-—-----———n-----u---l-——-+

>0000

>02FF

20300

237F

>0380

JO0TTF

>0780
»0TFF

>0800

»OFFF

>1000

»>35D7
>35D8

>3FFF

SCREEN IMAGE TABLE
Default start of Sprite
Pattern Table

End Screen Image

SPRITE ATTRIBUTE TABLE

----——-—--—---—------hh—h—-

COLOR TABLE
»03C0~03DF Vdp Roll Qut
>03EC-O4SF Value Stack

char >80 in
sprite pattern

0400 =

CHARACTER PATTERN TABLE
Standard Chars®at
50900 — >OAFF

Also used for PABa

FREE SPACE

Also used for Loader PAB

LA i e e e G

e LR L

16K FDP RAM Extended Basic Use

86

tm—————— e e e e e e e e e e e e +
20000 YDP SCREEN TMAGE TIBLE 768 Bytes |
1 Byte per acreen position. Character value offset by >60 (98) |
;
(Row-1)#32+Col=Address I
>02E2=New line Address l
>02FF I
e o e Lt T — . 2 e e e e
>0300 SPRITE ATTRIBUTE TABLE 112 Bytes |
4 Bytes per sprite. (room for 28 sprites) |
| I
>(}36F | vert pos-1 | horz pos | char #+496 | early clock bit : color P
ke 1 o 1 e e e e - e e Al 0 e e o e
20370 | EXTENDED BASIC SYSTEM AREX 128 Bytes |
| [
>0371 | Auto Boot needed Flag !
0372 | Line to start execution at I
>0376 Saved symbol table 'GLOBAL' pointer I
>0378 Used for CHR$ |
>0379 Sound Blocks |
| |
>0382 Saved Program pointer for continue and Text pointer for break |
>0384 Saved Buffer lLevel for continue |
| >0386 { Saved Expansion Memory for continue |
>0388 Saved Value Stack pointer for continue)
>0384A On-Error Line pointer
| >038C Edit Recall start address
>038E Edit Recall end address
>3390 | Used as temp storage place (FAC12)
{ 20392 | Saved main symbol table pointer |
! >039% Auto load temp for inaide Error I
»0396 Saved last Subprogram pointer for ocontinue !
>0398 | Saved On-Warning/Break bitas for continue I
| >0394 Temp to save subprogram table |
>039C Same as above , Used in SUBS !
| >039E | Merged temp for PAB Pointer] I
| >03a0 Random Number generator seed 2 |
! | [
i 20345 Random Number generator seed 1 |
{ l
| >03AA Input temp for pointer to Prompt !
] >03AC | Accept temp pointer |
| J03AE | Try Again l
| >03B0 ! Pointer to standard atring in VALIDATE |
: »03B2 i Length of standard atring in VALIDATE |
{ >03B6 | Size temp for record length. Also temp in Relocating Program |
| >03B7 | Accept "TRY AGAIN" Flag
| >03B8 | Saved pointer in SIZE when "TRY AGAIN" !
i 203BA | Used as temp storage place (FAC10)
| >03HC | 0ld top of memory for Relocating Program / Temp for INPUT
; >03BE | New top of memory for Relocating Program
_-----—-+----------—-----—__--—----—--——--—----—--_----—-----—--—---—-—----
| >03C0 Temp Roll Out Area 32 Bytes
: (part of scratch pad RAM is moved here for various operations) |
! »>03DC | Floating point sign !
{ >03EF |

T P e e e e e e e +
| >03F0 PATIERN DESCRIPYOR TAELE . 512 Bytes
I | SPRITE DESCRIPTOR TABLE
|
8 Bytes per character / 114 characters (30-143)
}
203F0 = Char 30 (The Sprite Motion Table uses the memory
>03F8 = Char 3t space for character sets 15 & 16)
- >0400 = Char 32
>07TF
-------- +------—----———-—---—---------—----—--------—-—-------—--——-—---——-+
20780 SPRITE MOTION TARLE 128 Bytes
i Bytes/Sprite |
>OTFF | vert velocity | horiz velocity | sys use ! sys use |
-------- +~—------—----——----——------—---------—-------------———--—--—--——--+
|>0800 | COLOR TARLE 32 Bytes
} 1 Byte/Character set
! l
>081F | | foreground colop : background color |
-------- +----—-—-n---——--------—---——-—---——--—-------------—-----—-----—--+
| >0820 CRUNCH BUFFER 160 Bytes
This area is used while crunching ASCIT into token codes.
>08BE
-------- +—---—------——-----—----------—-------——------—-—--—-—--—----—-—-—-+
>08C0 EDIT/RECALL, BUFFER | 152 Bytes
This area holds the info you type in on the command line.
>0957
e ————— ettt +
20958 VALUE STACK (Defzult Base Pointed to by >832)4) !
o
Used by the ROM routines 3ADD, SSUB, SMIL, 3DIV, SCOMP etce,
20967 | Top of Stack Pointed to by >836E (GOSUBS Stacked here)
R e e ———— b —m———
»0968 The items in this area move according 11880 Bytes
| to the size of the erunched program. *
The SYMBOL TABLES are generated (except the PAB) during
the Pre-Scan period after You type RUN. The strings are
Placed in memory when they are assigned {(ie: A$="Hello")
Without Mem-Exp With Mem-Exp
!
! STRINGS STRINGS
DYNAMIC SYMBOL TABLE & PABRS DYNAMIC SYMBOL TABLE & PABS
STATIC SYMBOL TABLE STATIC SYMBOL TABLE i
I B T .
{ LINE NUMBER TABLE Numeric Values, Line Number !
| e . e 1 e . e . e Table and Program Space moved |
PROGRAM SPACE to High Mem-Expansion !
{(erunched program) }
!
} The Line Kumber Table and the Crunched Program are saved to |
| disk like they reside in memory for PROGRAM "Memory Image" |
>3TD7 | type files.]
o e e e e e e o +

16K VDP RAM Extended Basic Use Continued

LT A e —

e

»37D8 DISK BUFFERING AREL for CALL FILES(3) 5 Bytes |
>37D8 Validation code for the Disk Controller DSR {>A4)]
23709 | Points to TOP of VDP memory (>3FFF) !
>3TDB | CRU base identifigation { 11 for CRU 1100) l
»370C { Maximum number of OPENed files (>03 default) |

D e e e e e e e e e e e
File Control Block for 1st file OPENed 6 Bytes 518 Bytes
i »37DD) Current Logical record offset

! D>37DF Sector number location of File Descriptor Record
>3TE1 Logical Record Offset {only used with VARIABLE records)
>37E2 Drive number (high order bit set = Updated Data Buffer area)

| File Descriptor Record (brought in from the disk 256 Bytes)
>37E3 | File Name

>37ED Reaerved (>0000)
| >37EF File Status Flags (file type and write protection) |
>37F0 Max number of Records per Allocation Unit (1 AU = 1 Sector) |
>3TF1 Number of Sectors currently allocated (256 byte blocks) |
>37F3 End of File offset within the last used sector |
>3TFh4 | Logical record length (ie: FIXED 80 or VARIABLE 254 etc,) |
>37TFS # of FIXED length records or # of seotors for VARIABLE length |
| (the bytes are reversed ie: LSBIMSB should be MSBJLSB)} {
»3TFT Reserved (30000 >0000 20060 >0000) l
>3TFF Pointer Blocks - § nibble, 3 byte, clusters that point to |
the Start Sector numbers and the higheat logical Record |
Offset in the cluster. Change the nibble order from |
! i882:381] |rot:ss3| Iro3:r02] to |sail:as2:sst| Iro3:ro2:ro1| |
| >38E3 | Data Buffer area 256 Bytes |
—— R e — e}
>39E3 File Control Block for 2nd file OPENed 6 Bytes 518 Bytes |
sape pattern as above |
! >39E9 File Descriptor Record 256 Bytesa |
same pattern as above |
| >3AEg Data Buffer area 256 Bytes |
| s O
| >3BE9 | Pile Control Block for 3rd file OPENed § Bytes 518 Bytes |
! ! same pattern as above |
| >3BEF | File Descriptor Record 256 Bytes !
{] same pattern as ahbove |
| >3CEF | Data Buffer ares 256 Bytes !
I-—----—-+-------—-—---------—-----—--——-—--——----------—------------—------+
>3DEF | VDP STACK ARBA- - ’ 252 Bytes |
i 23EEA | Used by the Disk Controller DSR !
-——-—---+-----——---—-----——----—-—----—-----——--------—--------—--—-----—--+
l DISK DRIVE INFOQ § Bytes |
>3EEB | Last Drive Number accessed |
>3EEC Last track access on Drive 1 !
| >3EED | Last track access on Drive 2 |
>3EEE Last track access on Drive 3 f
———————— +———----—-——n--—————-——--—-—-———————————--——---———--—-——--—----n—-—+
{ >3EEF (?? not used any more was for the 99/4 77) 6 Bytes |
>3EF4 | :

-----—~—+-—--—--—--——-—-—-----—---——---—--——--—----------—--—------—--—----+
>3EFS5 | VOLIME INFORMATION BLOCK ! 256 Bytes |

| | (Copy of Sector 0 from the last disk accessed for a YRITR) |
| >3FF4 | Contains Disk Name, type and bit map for used sectors.)
l--r-----+-“-------------------—-----—-----—---------------------~--------“-+
| >3FF5 | FILE MAME COMPARE DUFFER 11 Bytea |
| >3FFF | Contains disk number and 10 character file name for laat accesas, |

COMSOLE GROM CHIP 0 (Monitor)

e e e e e e e e e e e e e e +
F o e e e £ty M | GROM ROUTINES l
1>0000 | GEHOM HEADER - [>0052 | POWER UP ROUTINE (displays the Title Soreen) l
')0000 I JAA Yalid GROH Headar IdEﬂtifiEﬂtiDﬂ Code l>0396 LOAD TITLE SCREEH charactepra routine I
| 50001 | >02 Version number { >039E LOAD REGULAR UPBPER CASE characters routine |
| 50002 | >0000 Number of Programs. e+« RORe hore 1>03C2 | LOAD LOWER CASE characters routine
»0004 | >0000 Addreas of Power Up Header -+s« Dnone here | >03CE GENERATE BEEP sound routine |
20006 | >0000 Address of Application Program Header none here i >03D6 GENERATE HONK sound routine
>0008 | >1310 Address of DSR Routine Header >03DC LINK ROUTINES for linking between programs and DSR's
>0004 | >1320 Address of Subprogram Header >043C RETURN from link or DSR
>000C | >0000 Address of Interrupt Link «»e. none in GROM
>000E | >0000 Reserved for future? expansion, >0h46 >05284C = BRANCH to GROM 1 >284C - WARNING routine |
| >0l49 >05284E = BRANCH to GROM 1 >2B4E - ERROR routine {
>06010 | GPLLMK SUBROUTINE VECTOR TABLE PO84C | 052010 = BRANCH to GROM 1 >2010 - Execute Basic
| The values in these tables contain the instruction >40 {BR) '
| which is BRANCH if condition bit in status register is RESET SOLLF DATA TABLES
| and the address 1s relative to the 6K GROM chip it resides in, SOULF DATA >80 (Hex 80) !
Actual address for GROM 0 = value - D4000 (le: >43DC = >03DC) | 0451 DATA for VDP Register default values
>0469 DATA for Color Table default values for Title Screen !
20010 | D>43DC LINK programs to link between programs and DSR's | 0479 DATA for BEEP sound
0012 >443C Return from LINK or DSR >048Y4 | DATA for HONK sound
20014 >899 CNS - Convert number into a string { | D048F ! DATA :1981: |
>0016 >4396 Load Title screen characters >0496 DATA :TEXAS INSTRUMENTS: {
0018 >439E Load Regular upper case characters ! J04AT | DATA :HOME COMPUTER: |
>0014A 4446 Generate Basic WARNING meszage >04BY DATA for Title Screen Characters (CHR$(32-95))
| >001C >4449 Generate Basic ERROR message | J06BX | DATA for Regular Upper Case Characters (CHR$(32-95))
2003E | DHHAC Begin execution of GROM Basic 20874 | DATA for Lower Case Characters (CHR${(96-126))
>0020 >4052 GROM Power Up routine l | >094D DATA :FOR:
20022 >51PE INT - Convert floating point to Integer function : | 20950 DATA for TI LOGO loaded at CHR$(1) im the Pattern Desc. Table |
20024 >4C82 " - Exponentiation, ralse a number to a power
| 20026 >UD59 SQR -~ Square Root function 2 >09A0 FLOATING POINT ROUTINES
>0028 >4DBA EXP - Exponential function 4 0940 Roll Out routine- moves part of Soratch Pad to YDP Roll Out Area
| >002A | >4E64 LOG - Natural Logarithm function i >00A9 CNS - Convert Number into String routines !
>002C >UEF9 COS ~ Cosine function B | DDAE6 Roll In routine- moves VDP Roll Out Area back into Scratch Pad
| J002E | D>4FOt% SIN - Sine function , | | >OAEF Balance of CNS routines |
! 0030 >UFSF TAN - Tangent fuaction A | J0C6C | V PUSH - Push a number from FAC onto the VDP Value Stack |
| 20032 >4FB0 ATN -~ Arctangent function 4 ! 2CTT ! Vv POP - Pop a number off the VDF value Stack to FAC I
>0034 >43CE ~ Generate BEEP sound | >0082 " =~ Exponentiation, rafse a number to a power !
20036 >h3D6 - Generate HONK sound | X0D&sg SQR - Square Root function |
| | >0DBA EXP ~ Exponential function |
| >0038 >054D12 = BRANCH to GROM 2 >i4D12 Get String Space routine i >0E6%4 LOG - Natural Logarithm function |
20038 >525E - Bit reversal routine | >0EF9 | (COS - Cosine funotion]
| >003D Ju417 - wpeclal GROM entry point for Cassette DSR, points to >OF01 SIN -~ Sine function |
a GROM routine that calls an IML to execute the low ! D0FSF ! TAN - Tangent function |
| level Cassette DSR in the console ROM which returns >0F80 | ATN - Arotangent function |
Lo the high level Cassette DSR in GROM. >OFDB DATA and misc constants used by the Floating Point routines |
>003F >052844 = BRANCH to GROM 1 >2844 Memory space check for PAB's | >117B Misc subroutines used by the Floating Point routines]
>0042 >0537B4 = BRANCH to GROM 1 >37B4 GPL subprogram setup ! >V1FE | INT - Integer function !
| >0045 260 = DATA - Basics screen character offset s ! I
i >0046 >0D00 = DATA - Speech Read address (>0D00 + >8300 = >9000) i >125E | BIT REVERSAL ROUTINE [
>0048 { >1100 = DATA - Speech Write address (>1100 + >8300 = >0400) | >1267 | DATA this is the >40 bytes that 1s moved into 8300 and used :
{ | | by the Bit reversal routine. |
20044 >43C2 Load Lower case characters l | | I
| ~—- The following three were changed in the later version of ==~ 1>12A5 | DATA :REVIEW MODULE LIBRARY: (ocurrently not used) {
— . GROM -~ After approx 3/82 or LTA 1482 ——- | ! ' |
>004C | >OUBY4 Addreds of the Title Screen character data table [>12C0 !y \ I
| 004E | >06B4 Address of the Regular upper case character data table 1 I2130F | \ Unused area contains 0000 / |
| 20050 | >0874 Address of the Lower case character data table +---—------------------—----—-——---------------------—--—------—-----------+
e e e o e ke e e e e e o el e 0 e 1 e - . B e ot . S e e . e o e S B +

90

+--—.—--———---————---——---——----——--—+--

f
:
I

CONSOLE GROM CHIP 0 Contimued

CASSETTE DSR -~ High Level - checks for OPEN errors, displays
3creen messages for cassette operation eto.

FAB set up for DSR (see Editor/Assembler manusl pages 291-304)

PAB+0 - I/0 Opcode (Open, Close, Load, Save etc.)

PAB+1 - Flag/Status (File-type, Mode of Operation & Data-type)

PAB+2 - VDP Data Buffer Address

PAB+4 - Logical Record Length

PAB+5 - Character Count (bytes) to be transferred

FAB+6 - Record Number (0-32767 not used for cassette 1/0)

PAB+8 ~ Bias for ASCII characters {>60 in Basica)

PAB+§ - Length of the Device Name ()03 for C51)

PAB+10 - Start of the Device Name 'CS1' or tCS2t

DSR Beader(s)

>1318 -~ Pointer to next Device Name Header

21326 - Start address for this Device

>03 - Name length for this Device

>435331 ~ DATA :0S1:

>0000 - Pointer to next Device Name Header - no more

>132C -~ Start address for this Device

»03 ~ Name length for this device

835332 ~ DATA :082:

SUBPROGRAM BHeader

»0000 ~ Pointer to next Subprogram header - no more

>1573 - Start address for this Subprogram

201 - Name length for this subprogram

03 - DATA :03: (can not CALL CTRL C (CHR$(3)) from Basics)

Start of CS1 DSR (set up for CS1)

Start of €S2 DSR (set up for ¢S2) 2

Both C31 & CS2 come here to staprt DSR -

DO CASE Branch table for OPEN, CLOSE, READ Record, WRITE Record,
RESTORE/REWIND, LOAD, SAVE, DELETE(close) ~

ERROR and EXIT routines _

CASSEITE ROUTINES -

OPEN a file routine £

READ a Record routine

WRITE a Record routine

Tranafer data routine for READ and WRITE

LOAD a file routine

CLOSE a file routine

VERIFY cassette data routine

SAYE a file routine

CASSETTE SUBROUTIMES - These subroutines diaplay the messages

on the screen for cassette operation, turn on/off the cassette

motors, look for key presses and wait for the leader to pass.

Cassette Motor On >155E Cassette Motor Off

Wait for leader to pass

r—q---—‘---—----——- ---——-ﬁ-ﬁh---h———-ﬂ--—-_*-

SUBPROGRAM >03 - Adds Bias >60 to the Cassette messages Y

DATA TABLES

Cassette operation messages
Joystick Codes for key scan

Small Character codes for key scan
Shift Table codes for key =scan
FCTN Table codes for key scan

CTRL Table codes for key scan

Table for modes 1 & 2 for key scan

-----—-—-“--—--ﬁ-—---ﬁ-——---—-—“-ﬁ_—----ﬁ-.n_--—--—----———---—— P - ey e B e S

>214D |
] >214F
>2151
22152
>2156 |

l
152154
{>215¢
|>2164
I>216C
j
1>216F
I
I

>216F
>2192
>2195

B A T - el G -

>21D6

>21E5

>221%

(le: CALL CLEAR or PRINT B+C ete.).

>AA Valid GROM Header Identification Code

202 Version number

>01 Number of Programs.

200 Reserved

20000 Address of Power Up Header “eas
>214D Address of Application Program Headep
20000 Address of DSR Routine Headep

>4D1A Address of Subprogram Header (in GROM Chip 2) I
20000 Address of Interrupt Link ves none in GROM
20000 Reserved for future? expansion. !

none here

GROM CHIF 1 VECTOR TABLE (32000 offset)
>4417 Routine to begin execution of Basio program in GROM '
>4195 Routine to clear flags & set up keyboard _

>460B Routine to parse (scan) an inputted command line
>466C Routine to generate the SYNTAX ERROR message. !
>46TE Routine to restore cursor position after Error

>4192 Secondary entry point for Basic Interpreter

>4TF1 Routine that CALLS routines in GROM 0 to load characters
>436D Routine to move blocks of VDP RAM

>46AB Routine to reset the length byte for strings and numerics
ERROR MESSAGES DATA TARLE

The Error messages in this table have a >§0 (96) offset added
to them for Basic 30 use the Explorer's Basic Bias to see
these. (1at bytezlength -~ Next bytes=message)

APPLICATION PROGRAM Header

20000 Pointer to next Application Program Header ... nons here
2216F Start address for this program {Main entry point)

>08 Name length for this program

>58492042 DATA :TI BASIC: (for the renu screen)

>31534943

>422B Vector for routine that erases the symbol table {>222B)
DATA for the cursor character pattern

DATA for the screen edge character pattern

DATA for VDP Registers 2, 3 and & (>F0 OC F8)

START OF TI BASIC INTERPRETER
The input line is scanned for the entries at »221% and branchea
to them. If not cne of these it executes the direct command

Entry point for '"NEW' routine
Secondary entry point for Basio Interpreter
Routine to clear flags, set up keyboard & prepare for input
on the command line,
Edit Routine that CALLs other routines to store the input from
the keyboard into the VDP RAM Screen Image Table,
Routine that CALLs another routine to acan the line just input
and convert it into token codes and store it in VDP RAM
CASE branch table for:
RUN NEW CONTINUE
LIST BYE NUMBER
OLD RESEQUENCE SAVE and EXIT! !

92

—— o,

»222B
>2245
>224D
>2268
»>228C
>229F
2227
22244
22342
>236D

>2377
22417
22457
>266C
>267E
»>26AB
>2TE3

»2TF1

N ek S T G By e

R MEely ey EEEE IS B WA e B

COMSOLE GROM CHIP 1 Continued

ﬁ-----—---------—--—--—-—------—--—----l-h-—-———-‘--l---—-—-----------—————------

TI BASIC INTERPRETER Cont.

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry

routine that erases the Symbol Table
'LIST' routine

*RUN' routine

YCONTINUE' routine

*NUMBER' routine

'SAVE' routine

'OLD' routine
*RESEQUENCE?
tBYE' routine

for
for
for
for
for
for
for
for
for

point
point
point
point
point
point
point
point
point

routine

Routine to move blocks of VDP RAM from a Lower address to

Entry

Routine to
Routine to
Routine to
Routine
Routine to

a Higher address as you input program lines.
>8300 = VYDP location to move FROM
»>8302 = VDP location to move TO
»835C = Number of bytes to move
poeint for 'EDIT' {program lines) routine
begin execution of Basic program
scan an inputted command line Cilled from »>21E5
génerate the SYNTAX ERROR message.
to restore cursor position after Error
resel the length byte for strings and numerics

Routine that clears the screen, resets the cursor and edge

characters and then executes the following routine

Routine that CALLs routines in GROM 0 to load character sets,

then it resets the foreground and background colors
and resets VDP Registers 2, 3 and &

YECTOR TABLE FOR EDIT & PRESCAN ROUTINES (>2000 offset)

>4FFF
>iF43
MUCTS
>UDFA

PUCAL
>HAL2
>4C36
JUFCYy
>4BDb
>4F12
>UEFYQ
>4F5D
>UC2B
>UF AF
>5493

>5450
>51ES
>522B
>up2h
>Up9g
>4C84
>ECAOQ
H4CCO
JUCTA
pL TR
>UALF

Preacan (builds symbol table and checks for errors)

Generates Bad Line Number error message +A

Routine to parse the input line for non spaée chars

Lists a program line to screen {(converts token code
into ASCII, ressrved words) I

Gets a valid character from the input line :

Main edit routine to read in a line from the keyboard

Starts auto number with our line # and increhent,

Finds where the first token is stored in vdp ram for line

Deletes and inserts program lines (moves memory around)

Checka for valid line number

Converts a line number from ASCII into Binary value

Locates a program line in vdp ram

Starts auto number with default values of 100,10

Converts line # from Binary to ASCII and displays it

Checks for room for symbol table or pab, this routine
may &Xecute a garbage collection and try again

Checks for type of char 0-9 a-z A-Z etec.

Places a variable in the symbol table

Puts dummy entries into the symbol table .

Prints out the WARNING messages

Prints out the ERROR messages

Checks the GPL stack and moves a char into it

Increments the VDP pointer for the next char

Handles unquoted strings adds unquoted token & len to it
Gets first non space char from the input line

Seocondary edit routine, allows different line length
Third edit routine, allows different starting cursor pos

e —

>2BD6

»2C2B
>2CT5
>2CTA

>2C84
»22CAQ
>2CAb
2>2CC0o
>2D24
»2D99

>2DFA

. >2EF'9

>2F12
>2F43
»2F5D
>2FAF
>2FCYy
>2FFF
>31E5
>3U50

23493

i S W S ek e

CONSOLE GROM CHIP t Contiobued

First 10 words point to the start of reserved word groupings.
Groups are broken up by number of characters (1-10) per)
reserved ward.' The Token value follows the reserved word
LINE EDITOR
Routine that accepts keystrokes into a screen line. This is a
lipe editor, it knows Insert, Delete etc. This entry point
sets the default starting point and line length for Basic)
Second entry point for the line editor. By setting the line
length in >835E before branching here you can change the
maximum line length }
Third entry point for the line editor., By setting the line
length in >B35E and the start point in >836%1 before branching
here you can have your input start and stop any place on
the screen l
Routine that moves memory around for inserting and deleting
program lines {
Routine that sets up the values for NUMBER (auto line numbering)
Routine that parses a line and gets the non space chars |
Routine that gets the first non space char. Both tbis routine
and the one above CALL the routine at >2CA6 !
Routine that checks the stack and moves a char to it :
Routine that increments the VDP pointer and jumps to >2C84 |
!
}
|

Routige that checks for strings or numerics and handles sach
Routine that handles unquoted strings, adds token & length to it
Routine that printa the WARNING measage on the screen
Routine that prints the ERROR message on the screen. The pointer!
to the length byte in GROM for the WARKING or ERROR message |
is in the Scratch Pad at »8376 _ I
Routine that lists a program line on the screen, Starting point |
for the line is in >8302 '
Routine that converts an ASCII line number into binary]
Routine that checks for valid line number input |
Routine that generates the BAD LINE NUMBER error message I
Routine that finds a line from the line number table |
Routine that converts line # from binary to ASCII & displays it |
Routine that finds the first token of a program line in VDP |
PraScan routine, scans line or program and builda aymbol table |
Routine that places the variable in the symbol table]
Routine that checks char type 0-9, a-g, A-Z etc. Character that !
is checked is at >8342. This routine sets the condition bit |
in the GPL Status register if char i1s valid for variable name!
Routine that checks for enough room for a symbol table entry I
or a PAB. If there's not enough room between the symbol table|
and the string space it tries to move the atring apace to a |
lower address, this may execute a garbage collection. If !
there still ian't enough room it generates the MEMORY FULL |
error message. (Word at >8344 = space needed in bytes) !
!
I
I
I

ROTE: Most of the above routines use the FAC and ARG sections of
Seratch Pad RAM for parameter passing. Some of them will use
the temporary space at >8300 - >8316. Usually whenever a
a4 routine does anything with a single character the character|
is at >8342. Also, most of the references to Scratch Pad are |
with an offset of >8300. |
ie: opcode BF 14 0008 = Double byte atore 0008 at >8314 !

{>360E

>362A

>3643

CONSOLE GROM CHIP t Continued

-------------------------------- T T e e e A e — e —— - ———————
BRANCE TABLE FOR A FEW OF THE ERROR MESSAGES
>05 5671 = Branch to 5671 - ILLEGAL STATEMENT
205 567D = Branch to 567D - MEMORY FULL H
>05 4D7C = Branch to 4D7C - BAD VALUE
»05 4D81 = Branch to 4D81 - STRING-NUMEER MISMATCH

ENTRY POINTS FOR A FEW OF THE CALL STATEMENTS

CLEAR ~ Flaces the space character + bias {>60) in every screen
position by using the GPL statement of ALL : :

DATA for SODND 242, >0B, >12, >22, >00, 00, >00, >00

DATA for SQUND >01, >FF, >01, >04, >QF, >BF, >DF, >FF, >00 |

SOURD - This routine handles the entire sound statement. First
it checks the duration, then it converts it into 1/60 seconds
because socunda are interrupt driven, Next it finds the First
frequency and divides it into 111834 (111834/freq) and passes
that value to a sound table it is setting up in VDP RAM. Next
it gets the volume and sets that up and then passes all the
values to the sound chip (>84300). Interrupt routine is in
the console ROM chip.

HCHAR - This routine and the VCHAR routine both call a
subroutine at >37D6 to parse the statement for X,Y,CHAR, #CHRS
and converts these into integer values. Then it puts them on
the screen using a FMT statement {Formatted block move)} that
allows for writing over the border characters.

VCHAR - This is very similar to the above statement except that
it places the characters vertically. The number of characters
is at >B34A, the character 1s at >8300, screen row is at
>837E and the acreen column is at >837F. 2

CHAR - This routine converts the atring into the proper values
for defining a character and moves these values into VDP RAM
at the proper character + bias (>60) location. Beth FAC
(>8344) and ARG (>835C) are heavily used during this CALL,
This routine appears to set up a temporary string in VDP RAM
30 it i3 possible that it could inveoke a garbage gollection
and if there isn't enough room it will generate a Memory Full

error message, |

KBY - This parses the statement for the key unit, checks it for |
the proper range, CALLs >3767 to move it to 8374 and then
executes the SCAN routine. After returning it checks the
Status and places the proper value into your variable. Next
it evaluates the keycode, converts it into floating point and
pPlaces it in your variable.

JOYST - This 1s very similar to the above statement except after
returning from >3767 it computes the proper X and Y values
by CALLing >5755 and then places them into your variables.

Subprograms to do paraing for left parenthesis and commas, range
checking for a range of 1-16, >0 or a preselected range. *

Subprogram to parse the row and column values out of a graphics
statement (le: CALL HCHAR...), ‘!

SCREEN - This subprogram sets the Screen and border color.
It uses the above subroutines to parse the atatement ang !
then places the value into VDP register 7. '

Subprogram to parse HCHAR and VCHAR statements for row, column
(by CALLing >378E), ASCII character value and number of !
characters.

-n—---——-a&—-—-_-----—--——--ﬁ*----—--—--l_--ﬂ_-- —--ﬂh—--———-ﬁ——---—-— | I & I | --ﬁ-—---+

VECTOR TABLE FOR FILE ROUTINES (>0000 Offset)
>h26C DISPLAY routine

>4160 DELETE.routine ‘

28227 PRIRT routine

>U344 INPUT routine

>H01E OPEN routine

>417T4 CLOSE routine

>41DT RESTORE routine

>U5E3 READ routine _

>4956 GET DATA FROM GROM/GRAM or RAM

>%1CF CLOSE ALL OPEN FILES routine | I
>46FC PROGRAM SAVE routine
>4641 PROGRAM LOAD routine
>UTHC LIST routine

>UBFC OUTPUT RECORD routine
>482B END OF FILE routine

OPEN ROUTINE - This handles OPEN #x:*device.xx®,VARIABLE xx,... |
Case branch table for the following OPEN parameters: ’
>R0AB VARIABLE
>806B RELATIVE
>40Dt INTERNAL
28070 SEQUENTIAL
>4095 OUTPUT
>U0GA UPDATE
>H0A4 APPEND !
>H0B0 FIXED

DELETE ROUTINE -~ This handles the varicus DELETE functions

CLOSE ROUTIME - This handles CLOSE #x or CLOSE #x:DELETE

CLOSE ALL FILES ROUTINE - This ¢loses all open files

RESYORE BOUTIME - This handles RESTORE {data), RESTORE xx (data)
RESTORE #x and RESTORE #X,REC x for files

PRINT ROUTIRE - This handles both screen and file PRINT. Both
this and the Display routine check for Internal or Diasplay
type records and handle each accordingly. !

DISPLAY - This handles the screen DISPLAY statement {(no files) |

INPUY ROUTIME - This handles both the soreen and file INPUT)
it also checks data type against variable type !

!
|

READ ROUTINE -~ This handles the reading of DATA into variablea
it is not used for files. CALL's routines at >J8CC - >4992
OLD ROUTINE - This is the OLD DSK1.xxxxx or OLD CS1 routine, it |

sets up the PAB, Calls the DSR, Teats the Checksum, gets the |
new addresses for the end & start of the line # table, makes |
ad justments for different RAM size (3K?) and stores them at 1
>8332 & >8330 respectively. Adjusats the memory and updates
the line # pointers irf different RAM size. Both OLD & SAVE
CALL routines at >4888 - >4BCB
SAVE ROUTIME - This is SAVE DSK1.xxx or SAVE C31, it closes all
open files, clears all break points, stores the start and end
pointers for the line # table, finds the number of bytes used]
(>8370), passes it to the PAB and calls the DSR for a SAVE., |
LISY ROUTINE - This lists out the program lines to the acreen I
or to the device specified. Unfortunately it generates a |
Syntax error if you use anything but & : after the devioce |
|
|

name. le; LIST "PIO":100-150 im OF but not "PIO®,VARIABLE 28
END OF FILE ROUTINE - This is the EOF(x) function.

COMSOLE GROM CHIP 2 Contimued

te e —— e r b e s ——————————— e —————————— e e ——— +
SUBROUTINES
>4888 OLD & SAVE SUBROUTINE - This gets the program name, initializes
- many of the program pointers, deletes the symbol table, sets
up the PAB and returns.
>48CC READ & INPUT SUBRODTINES - These find the symbol table entries, |
I check for Strings or Numerics, decide if its GROM or RAM
! | data and pass the Data item to the variable.
| D956 | - GET DATA FROM GROM OR RAM - Reads the next Data item from
I ! GROM if the GROM Flag at >8389 1s in >834D. If >834D is = §
| | then the next Data item is read from RAM.
{ >4993 | OPEN, CLOSE & RESTORE SUBROUTIMNES - These parse out the file
| | number (ie: #1, if its there), check for the proper range
| (> 0 and < 256), scan the PAB chain for the proper file.
} 1f any of these items are not right it returns with an error.
On a Close the routine at >49E6 deletes the PAB and ad justs |
the memory and PAB chain pointers.
>UB53 PRINT SUBROUTINES - These handle the outputting of data to the]
| screen or to a file. They check for valid separators {(,;:
} and handle each accordingly. For screen output they add the
| character offset (>60) to each character. '
>U4BFC - QUTPUT A RECORD - This is the subroutine that outputs a |
a record to either the screen or an output device, depending |
! on the PAB (file #0 = screen output))
I
1 >4D00 VECTOR TABLE FOR BASIC EXECUTION I
>4D00 >56CD Screen Scroll Routine |
I >4D02 | >5120 Move a String from the Program area to the String Space |
>4D0o4 >4DB0 Second entry point for executing a Basic Program |
>4D06 »56BB Subroutine to find line number after BREAK ﬁ }
>4D08 >5613 Subroutine that sets the pointer for next Dafa item |
} >4D0A >5645 Subroutine to convert line number into ASCII {Trace mode)
>4D0C >UDEF Third entry point for executing a Basic prognam (CONT)
Y4DOE >4E38 Subroutine that BREAKs a running program |
>8D10 >4D84 Firsat entry point for executing a Basic program (RUN)
412 »515C Subroutine that sets up room for a String : !
>UD14 | >55BB Subroutine that clears out g temporary String !
>4D16 | D>56E1 Subroutine to convert a String into a Number !
>4D18 >51A9 Garbage Collection subroutine, 1 |
{ }
JUD1TA SUBPROGRAM POINTER TABLE (For CALL xxxx...)
| DDA >UD2h Point® to next Subprogranm !
JUD1C >3538 Entry point for this Subprogram
*AD1E 205 Length of this name
JUD1F | DO534FSSUENY ; SOUND:
>hD2y >4D2E Points to next Subprogram
24D26 2351C Entry point for this Subprogram
»4D28 >G5 Length of this name .
>4D29 D43UCL54152 ;CLEAR: -
| DUD2E >4D38 Points to next Subprogram
I >4D30 >5713 Entry point for this Subprogram !
| >ub32 >05 Length of this name
| >4D33 >434F4CHF52 :COLOR:
| >4D38 >4D42 Points to pext Subprogram
| D>HD3A >S6EF Entry point for thia Subprogram
| >4D3C »>05 Length of this name
! >4D3D | >4743484152 ;QCHAR:
A o e e e e T e e ot B B o R e o i e e P +

N LTI oo N Il - U
o e . . R 1 A
! _4:'3_-*_ BT . W A .
- s - Sl "

AR
S emlh

i

I-.-)
:,?-., W I
Al TR
Iy

o

e Byl
L. -

i)

n
'h-lﬂ-_-h-—q--—-h-

CONSOLE GROM CHIP 2 Contimned

SUBPROGRAM POINTER TABLE Cont.
>4DUC Points to next Subprogram

>0%

>4D56 Points to next Subprogran |
>362A Entry point for this Subprogram

>05

>4DSF Points to next Subprogram !
23643 Entry point for this

>04

>03

>RB4S59

>4D71

>05

20000 Points to next Subprogran {no wmore)
>3TBF Entry point for this

>06

Generate 'STRING-NUMBER MISMATCH'

Length of this nape
>UBLU34B4152 : ACBAR:

Length of this name
>5643484152 :VCHAR;

Length of this name
>43484152

:CHAR:
>4D67 Points to next Subprogram
>3708 Entry point for this Subprogram

Length of this name

S KEY:
Points to next Subprogram. l
23748 Entry point for this Subprogran

ihength of this name
>4ALF595354 : JOYST:

Length of this name
253435245454 : SCREEN:

Subprogram

!

]

!

>360E Entry point, for this Subprogram !
!

Subprogram

Error Messnage

>56D4 - Branch to routine that sets up format for screen

2566C -

displays the line number.

- This is the normal end of program subroutine.

program execution. This is where
ches to,

aets up the BREAK message and

|

|

’ |

Generate 'BAD VALUE' Error Message |
}

I

I

Branch to CAN'T DG THAT Error

- This i3 where a Basic program Firat starts to RUN. This
sets up the line number pointers,
1 line and falls through to the next entry.

EXECUTE -~ This starts execution of
mode it executes the stateme

Third Entry point for Basic
the CONTINUE Command bran

Subroutine that BREAKs a running program,
while GROM is executing,

aorolls the screen up

the program or if in Command
nt you just typed in.

It prevents a breai

VECTOR TABLE FOR BASIC RESERVED WORDS |

>4FB6
>5463
25479
>5459
>545E
>400E
24004
»50DB
>5111
>400C

- »50C8B

>h006
>4008
24004
>4F99

FOR
BREAK

UNBREAK

TRACE

UNIRACE

READ
PRINT
CALL

QUOTED STRING CONSTANT
RESTORE
RANDOMIZE

INPUT
OPEN
CLOSE
(

(Left Parenthesis)

>54CF
»5600
>5613
>56145
>565C
>56BB
>S6EF
>5713
|>5740
>5755
>STAB
>5TCO

W'
-y
B
B

Wiy bl s e

VECTOR TABLE FOR BASIC RESERVED WORDS Cont.

>UFB2
>4F A8
>H4ED1
>YEDC
>4EE2
>UEES
>UEEE
>YEFA
>UF26
>UF40
>4FU6
MIF4C
»52BE
>53EA
>UF00
24000
4002
>524A
»>531A
>5349
>5349
>5306

>05 401C EOF
Rather than document each of the above items, which would
require another #-6 pages of memory maps, we will talk about

these

First off, many of these routines end with the Opcode of >10
this is the mame as Basic's CONT, so the interpreter will go
back to >4DBF and grab the next statement in your B£

All of these routines use various parts of Scratch Pad RAM
with FAC (>B34A) and ARG (835C) being used very heayily. There
is also a 24 byte segment at the top of Scratch Pad RAM {>8300
through >8316) used by Basic as temporary storage piaces
for many of its routines. Some of the routines will ,clear out
any values it has place into the FAC and ARG area or the Row,
Column and Character value area at >837D - >B37F.

Most of the String handling routines require that FAC through|

FAC + T (58344 ~ »>8351) be aet up prior to execution as follows:
>8344 = The Symbol table address that points to the string.
>834C = 6500 for a string and >6400 for numerics. }
>834E = The address in VDP RAM of the string,
>8350 = The length of the string.

#>8352 - Sometimes the GROM Flag is temporarily stored here

+ (Plua)
- (Minus)
ABS

ATN

cOS

EXP

INT

LOG

SGN

SIN

SQR

TAN

LEN

CHR$

RND | ' [
DISPLAY
DELETE
SEG$
STRS
VAL
POS

ASC

routines in general.

slc Program.

Subroutine to handle User Defined Functions (ie: DEF)
Subroutine to check for String or numeric and set register bita,
Subroutine tc set the pointer for DATA items,

Subroutine to print out an Error Message.
Ssubroutine to find line # after BREAK, UNBREAK or RESTORE. !

|
]
|
}
Subroutine to convert the Line number into ASCII, 7
I
|
]
I

GCHAR subroutine.

COLOR subroutine,

Subroutine to convert floating point to integer.
Subroutines used by CALL JOYST and CALL KEY.
Subroutine to check for the left parenthesis { .

Error

i e S e e S e v e S S N S e A A P A e e e e sl S S A e S R P A e W S Al e e e S . R N

Message subroutines, !

CONSOLE CRU BIT MAP (9901)

i —— . A - P S vl S ok bl e sl N R S S A A A e e e e A A e e S sl A o - - e d e il e o

All of the Data for the 9901 on the 99/8A is inverted. !
-------------- | On or Set = 0 and Off or Reset = 1
Cru Base| Bit e=ccwcccm e reacceerm e rnccc e e —e e
|Address ! No. Description’ !
>0000 0 0 = Internal 990% Control 1 = Clock Control |
>0002 1 Set by an External Interrupt {Peripheral Device) I
>0004 2 Set by TMS 991E8A on Vertical Retrace Interrupt
| >0006 I 3 Set by Clock Interrupt for Cassette read/write routines |
| I Alao used for Keyboard Matrix Row 7
I KEYBOARD 8 x 8 MATRIX !
| | Column 0 1 2 3 4 5 6 7
! A e e et e e e e e -
1>0006 3 Row 7 | = . +» M N / Joy! Joy2 Fire | |
>0008 4 Row 6 | SPACE L K J H 3 Joyl JoyZ2 Left | !
20004 5 | Row 5 | ERTER QO I U Y P Joyl Joy2 Right | }
1 >600C & Row & | 9 8 T & 0 Joyl Joy2 Down | !
| >000E T Row 3 FCTN 2 3 4 5 1 Joyl Joy2 Up | |
{20010 8 Row 2 SHIFT S8 D F G A ! |
| >0012 9 | Row CTRL W E R T Q i
>0014 10 | Row 0 X C v B Z |
| e ———— e —————— e o e e e e e + |
| ! |
1>0016 11 Not Used !
>0018 12 Reserved - High Level |
>0014A 13 1§ Not Used I
»001C 14 | DNot Used !
>301E | 15 | Not Used r !
| } | {
10020 | 16 | Reserved !
1 >6022 1 17 | Reserved .
1>0025 | 18 | Bit 2 of Keyboard Matrix Column select (8x8 matrix) l
0026 | 19 | Bit 1 of Keyboard Matrix Column seleoct
>0028 | 20] Bit 0 of Keyboard Matrix Column select (MSB)
I ! (set up the column to read - R1 = 00xx thru 07xx)
| P (LI R12,50024 LDCR R1,3)
} | (and read the row bits (3-10) with) B
: : (LI R12,>0006 STCR RU,8 1INV RY) |
'
| 21 | Set Alpha Lock | {
| 22 | Cassette CS1 motor control On/0Off |
| 23 Cassette €52 motor contrel On/Off |
1 24 | Audio Gate enable/disable l
| 25 Cassette Tape Out 4
i 26 } Reserved |
i 27 Cassette Tape In !
| 28 # |
} ! & Not Used - causes lock up. |
128 | +« |
A o e e e e Bl A e . et . S o B B e e T —— -t

100

9900 MICROPROCESSOR INSTRUCTIONS

9900 MICROPROCESSOR INSTRUCTIONS

{
Result
Status Bits compared
Inst L> A>EQC OV OP X to zero Description
A X X X X X . . yes . Add words
AB X X X X x Xx . yen Add Bytes
ABS x x x x x . ., no Absolute Value
Al X X X X x ., . yea Add word with Immediate value
ANDI x x x yas AND word with Immediate value
B . e . s s no Branch (Goto)
BL e = e e e . no Branch & Link {(Goaub - RitzReturn Addr)
BLWF no Branch & Load Workspace Polnter
C X X X .. .« . . no Compare words
CB X X X . . X . ne Compare Byteszs
CI X X X yes Compare word with Immediate velue
CEOF . . + +« « « no External Clock Off ~ not on 4A
CEON+ . . no External Clock On - not on ki
CLR no Clear (make it >0000)
COC v s X 4 4 . no Compare Ones Corresponding
CZC - e X no Compare Zeros Corresponding
DEC x x x x x . . yes Decrement
DECT x x x x x , . yes Decrement by Two
pIv . ., . . x . . no Divide {unaigned)
IDLE no Idle - Wait f'or Interrupt - not on 4i
INC x x x x x . , yoa Increment
INT x x x x x . . yea Increment by Two
INV x x x yes Invert (same as NOT)
JEQ . .t no Jump if Equal (or Zero)(EQ=t)
JGT . 1 no Jump if Greater Than él>=1}
JH 1 .0 no Junp if High {L>=1 and EQ=0)
JHE 1Y . 1 no Juap if High or Equal (L>=1 or EQ=1)
JL 0o . 0 no Juap if Low * {L>=0 and EQ=0)
JLE 0 . 1 no Jump if Low or Equal (L>z0 or EQ=1)
JLT o 0o no Jump if Less Than (#>=0 and EQz0)
JHP no Jump - always (unconditional)
JNC . ., ., 0 . . . no Jump if No Carry {(C =0)
JEE . . O ., . . . no Jump if Not Equal (EQ=0)
JNO ., . . . 0 . . no Jump if No Overflow (0V=0)
JOC N no Jump On Carry (C =1)
JOP .,1 . no Jump if 0dd Parity {OP=1)
LCR x x x x . b , yes Load Cru Bits (Write Out Bits)
LI X X X . .+ .+ yes Load with Immediate value
LIMI « « . no Load Interrupt Mask Immediate
LREX . e v e e e no Load External - not on 3JA
LwPl ., no Load Workspace Pointer Immediate

101

Eesult

Status Bits compared
Inst L>A>EQC OVOP X to zerc Description
MOV x x x yes Move word
MOVBE x x x . , x . yes Move Byte
MPY . ., , . . no Multiply (unaigned)
NEG x x x x x ., . yes Negate (same as Change Sign or NOT+1)
) no No Operation - Pseudo (JMP $+2)
ORI x x x yes OR with Immoediate value
RSET . . . « .+ . . no External Reset - not on 4A
RT e e e s e e . no Return - Pseudo (B SR11)
RTWP x x x x x x x no Return with Workspace Pointer
S X X xXxX X xXx . . yes Subtract words
SB X X X X X X . yes Subtract Bytesa
S0 . . . - e s no Set Bit to One
SBZ « v v a s e . no Set Bit to Zero
SET0 no Set to Ones (wake it >FFFF)
SLA x x x x x . . yes Shift Left Aritheetic
SOC X X x . e . yes Set Ones Corresponding
SCCB x x x . . x . yes Set Ones Corresponding Bytes
SRA x x x x . . . yes Shift Right Aritheetic
SRC x x x x . . , yos shift Right Circular
SRL. x x x x ., , . yes Shift Right Logical
STCR x x x . . b . yes Store Cru Bits (Read In Bits)
SIST .+ .« + « + + no Store 3Status Register
STRF . . . v v no Store Workspace Pointer
SWwPB no Swap Bytes
SIC x x x . s yes Set Zeros Corresponding
SICB x x x . . x . yes Set Zeros Corresponding Bytea
TB s o0 X . e e . no Teat Bit
X e &€ e € e @& e yes Execute
XOP o e e € e e x no Extsnded Operation - Software Interrupt
X0R x 2 x , . . . yea IO0R - Excluaive OR
D - Odd Parity bit is only affected on byte type Load Cru and Store Cru

inatructions (8 bits or less).

e - The Exeoute instruction does not affect status bits,
that the Execute instruction executes may. The IOP imstruction sets the X

but the instruction

status bit and tbe instruction that the XOP branches toc may affect the
atatus bits, o

NOTE: If the Result is compared to zero it will set the E (Equal) when it is
zero and clear the E bit in the Cpu Status Register when it is not zero. So
if the instruction is MOV RO,R0 and RO contains zero, the E bit will bes set
and the next instruction may be JNE >xxxx (Jump if Not Equal) whioh, in this
case, has the same meaning as a Jump If Not Zero instruction would.

e e ¢ e mggem s i m.— L, - ok

BREAK POINT WORK SHERT

CP0 BP SETTIRGS

Key Scan Routine E/A and GPL
Key Press Detected & Decoded

Read Key Board Cru Bits

Start Execution Of Interrupt Routine

GBOM BP SETTINGS

Reset V1 to Watch Power Up

Power Up Title Screen Built

YDP BP SEITINGS
Start Socreen Scroll

End Screen Scroll (32 Column)

o>tart Write To Basic Crunch Buffer

Start Write To X-B Crunch Buffer

Reset Screen Color 1n Basics

103

02B2
ouyy
0346

0900

0020
#4300
k320
h820
8707

- . - e — —

_—— e s e ———— e —

-
'
I
T,
ki
&
I:. 11

GR(OM START ADDRESS & YDP REGISTER

WORK SHEET
POWER UP RQUTINE - TI BASIC
Cpu Grom Cpu Grom
WS E3E0 AD xxxx WS B83EQC AD 216F _
PC 0024 PC 0064
vO OO v2F0 v4 F9 v6& F8 v 00 v2 FO vl F9 vh FB
vi E0 v3 0E v5 B& vT F7 V1IEO v30E v5 B6 vT F7
TI EXTENDED BASIC EDITOR/ ASSEMBLER
Cpu Grom Cphu Grom
WS 83ED AD 6372 ____ WS 83E0 AD 6025 _
PC 006A PC Q06A
vD 00 v2 (00 vl Q0 vb 00 vl 00 vZ D0 vh Q1 vb 00
vl EO v3 20 v5 06 vT 07 VIED VI ODE 5 06 vT FS
MINI MEMORY EASY BUG
Cpu Gron Cpu Grom
WS 83E0 AD 6020 _ WS 83EQ AD T0B9 _
PC 0064 _ PC 0Q06A
vO 00 w2 00 v O vb 00 ¥06 00 v2F0 v4 Fe v& PB
VIEC Vv30E v5 06 +v7 Fs VIEO v3O0E v586 vT F7
TERMINAL EMULATOR II - Title & Menu ADVENTURE
Cpu Grom Cpu Grom
W3S 83F0 AD 6292 WS 83E0 AD 6798
PC 0064 PC CO6A
vO 00 w2 00 v D vbh 00 vO OO w2 00 wi 01 vb F8
viEO Vv30F v508 v7CF viFO v3OF v586 v7 4B
SPEECH EDITOR MUNCH MAN -~ Title
Cpu Grom Cpu Grom
¥S 83E0 AD 6075 ____ 5 WS 83E0 AD 6020
PC 0064 PC 0064
vO 00 v2F0 viF9 w6 F8 vO 00 v2 00 vi 01 vb 00
viEO v3O0E v5 86 v7 FY v1E0 Vv3O0E 506 v7 03

104

A e e A A v - o R - o

/
GROM START ADDRESS & VDP REGISTER MILLERS GRAPHICS - LIMITED WARRANTY
' WORK SHEET _ -
PARSEC - Title PARSEC - Game Millers Graphics warrants f."ha Explorer program, which it manufactures, to be
Cpu Grom Cpu Grom free from defects in materials and workpanship for a period of 90 days fronm
W3 83E0 _ AD 601D _____ - WS 83E0 _ AD 60BT ___ the date of purchase.
PC 006A PC 006A -
During the 90 day warranty period Millers Graphics wil) replace any defective
v0 00 v2 00 vi 01 vbh 00 vO 02 vz 06 vl 03 v6 03 products at no additional charge, provided the product is returned, shipping

vl E2 v3 OE vh 06 vi 11 vi Eg v3 FF vh 36 v 00 . prepald tc Millers Graphics, The Purchaser i3 reaponaible for insuring any
product 20 returned and assumes the risk of loas during shipping.

LT

Ship to:
—— — : Millers Graphios
Cpu Grom Cpu - Grom ! 1875 W. Cypress Ave.
WS AD e WS __ AD . 3 San Dimss, California 91773
PC PC - .z
vO0 _ w2 vl vh vO . v2 v _____ vh ____
v] . v3 v5 vl vl v ___ v5 vT WARRANTY COVERAGE
‘ This EXPLORER program is warranted againat defective material and
workmanship. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY
- R ACCIDENT, UNREASONABLE USE, NEGLECT, TAMPERING, INPROPER SERVICE OR OTHRR
Cpu Grom Cpu Gron CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR WORKMANSHIP.
WS _ - AD W3 —— AD ’
PC PC - ———
WARRANTY DISCLAIMERS
v0 __ y2 v __ vb6 vOD v2 ____ v vh __ -
v v3 v5 v7 vi v3 Y5 v7 ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING, BUT. HOT LIMITED
B TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO THE ABOYE 90 DAY PERIOD. MILLERS
GRAPHICS. SHALL NOT BE LIABLE POR LOSS OR USE OF THE SOFTWARE OR OTHER
R R _ g INCIDENTAL OR CONSEQUENTIAL COSTS, BXIPENSBES, OR DAMAGES INCURRED BY THE
Cpu Grom Cpu Gml ' CONSUMER OR ANY OTHER USE.
WS AD WS __ .. AP S
PC Ppc _ — Some states do not allow the exclusion or limitation of implied warranties or
| k. consequential daweges, so the above limitations or exclusion may not apply to
vO0 v2 vl ____ vb v y2 vl v6 you irn those states,
vl v3 vo vT vl v3 v5 |)
LEGAL REMEDIES
4 This warranty gives you specific legal rights, and you may also have other
Cpu Crom Cpu Grom rights that vary from state to state, |
WS AD ws __._.__ AD
PC P _ . ——
, REPLACEMENT AFPTER VARRANYY
v0 v2 vh __ b v{ v2 _ vl v _
v v3 v5 v7 vi v3 - v5 vl ¢ After the 90 Warranty period has expired you may return any original

defective diskette, glong with a check for 4.00 to cover ahipping and
diskette coata, and we will replace 1it.

105

